-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompetition.py
161 lines (118 loc) · 4.93 KB
/
competition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import ray
import time
from copy import deepcopy
import matplotlib.pyplot as plt
from random import randint, choice
get_ipython().run_line_magic('matplotlib', 'inline')
import pickle
def evaluate_policy(env, policy, trials = 1000):
total_reward = 0
for _ in range(trials):
env.reset()
done = False
observation, reward, done, info = env.step(policy[0])
total_reward += reward
while not done:
observation, reward, done, info = env.step(policy[observation])
total_reward += reward
return total_reward / trials
def evaluate_policy_discounted(env, policy, discount_factor, trials = 1000):
total_reward = 0
#INSERT YOUR CODE HERE
for _ in range(trials):
env.reset()
done = False
observation, reward, done, info = env.step(policy[0])
total_reward += reward
beta = 1
while not done:
observation, reward, done, info = env.step(policy[observation])
beta = beta*discount_factor
total_reward = total_reward + beta*reward
return total_reward / trials
def print_results(v, pi, map_size, env, beta, name):
v_np, pi_np = np.array(v), np.array(pi)
print("\nState Value:\n")
print(np.array(v_np[:-1]).reshape((map_size,map_size)))
print("\nPolicy:\n")
print(np.array(pi_np[:-1]).reshape((map_size,map_size)))
print("\nAverage reward: {}\n".format(evaluate_policy(env, pi)))
print("Avereage discounted reward: {}\n".format(evaluate_policy_discounted(env, pi, discount_factor = beta)))
print("State Value image view:\n")
plt.imshow(np.array(v_np[:-1]).reshape((map_size,map_size)))
pickle.dump(v, open(name + "_" + str(map_size) + "_v.pkl", "wb"))
pickle.dump(pi, open(name + "_" + str(map_size) + "_pi.pkl", "wb"))
# In[3]:
ray.shutdown()
ray.init(include_webui=False, ignore_reinit_error=True, redis_max_memory=500000000, object_store_memory=5000000000)
# In[10]:
@ray.remote
class VI_server_v2(object):
#INSERT YOUR CODE HERE
def __init__(self,size):
self.v_current=[0]*size
self.v_new = [0]*size
self.pi = [0]*size
def get_value_and_policy(self):
return self.v_current, self.pi
def update(self, start_state,end_state,max_actions,max_values):
for state in range(start_state,end_state):
self.v_new[state] = max_values[state-start_state]
self.pi[state] = max_actions[state-start_state]
#print("called by a worker")
def get_error_and_update(self):
max_error = 0
for i in range(len(self.v_current)):
error = abs(self.v_new[i] - self.v_current[i])
if error > max_error:
max_error = error
self.v_current[i] = self.v_new[i]
return max_error
@ray.remote
def VI_worker_v2(VI_server, data, start_state, end_state):
env, workers_num, beta, epsilon = data
A = env.GetActionSpace()
S = env.GetStateSpace()
#INSERT YOUR CODE HERE
V, _ = ray.get(VI_server.get_value_and_policy.remote())
action_chosen = [0]*(end_state-start_state+1)
values_for_state =[0]*(end_state-start_state+1)
#print("beta is",beta)
for state in range(start_state,end_state):
max_v = float('-inf')
max_a = 0
for action in range(A):
succ = env.GetSuccessors(state,action)
tp_score = 0
for st,prob in succ:
tp_score+= (prob*V[st])
tp_score = env.GetReward(state,action) + beta*tp_score
if max_v < tp_score:
max_v = tp_score
max_a = action
action_chosen[state-start_state]= max_a
values_for_state[state-start_state] = max_v
VI_server.update.remote(start_state,end_state,action_chosen,values_for_state)
return data
def fast_value_iteration(env, beta = 0.999, epsilon = 0.0001, workers_num = 4):
S = env.GetStateSpace()
VI_server = VI_server_v2.remote(S)
start_and_last = []
data_id = ray.put((env, workers_num, beta, epsilon))
first = None
last = 0
batch_size = int(S/workers_num)
for i in range(workers_num):
first = last
last = min(first+batch_size, S)
start_and_last.append([first,last])
error = float('inf')
while error > epsilon:
workers_list = []
for i in range(workers_num):
w_id = VI_worker_v2.remote(VI_server, data_id,start_and_last[i][0],start_and_last[i][1])
workers_list.append(w_id)
results,_ = ray.wait(workers_list, num_returns = workers_num, timeout = None)
error = ray.get(VI_server.get_error_and_update.remote())
v, pi = ray.get(VI_server.get_value_and_policy.remote())
return v, pi