-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA2_lift.v
92 lines (67 loc) · 2.73 KB
/
A2_lift.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
(*
A2. Lifting Binary Operators
============================
*)
From graph_pebbling Require Import A1_misc.
(* Lift a binary operator to functions. *)
Definition lift2 {A B C D} (op : B -> C -> D) (f : A -> B) (g : A -> C) a :=
op (f a) (g a).
(* Lift a binary relation to functions. *)
Definition liftR {A B C} (R : B -> C -> Prop) (f : A -> B) (g : A -> C) :=
∀ a, lift2 R f g a.
Global Arguments lift2 {_ _ _ _} _ _ _ _ /.
Section Equivalence.
Global Instance refl_liftR `{refl : Reflexive B R} {A} :
Reflexive (@liftR A B B R).
Proof. firstorder. Qed.
Global Instance sym_liftR `{sym : Symmetric B R} {A} :
Symmetric (@liftR A B B R).
Proof. firstorder. Qed.
Global Instance trans_liftR `{trans : Transitive B R} {A} :
Transitive (@liftR A B B R).
Proof. intros x y z H1 H2 a; cbn; etrans; [apply H1|apply H2]. Qed.
End Equivalence.
Section Algebraic.
Ltac lift_proof H := repeat intro; extensionality a; apply H.
Global Instance assoc_lift2 `{assoc : Assoc B (=) f} {A} :
Assoc (=) (@lift2 A B B B f).
Proof. lift_proof assoc. Qed.
Global Instance comm_lift2 `{comm : Comm C B (=) f} {A} :
Comm (=) (@lift2 A B B C f).
Proof. lift_proof comm. Qed.
Global Instance left_distr_lift2 `{distr : LeftDistr B B (=) f1 f2} {A} :
LeftDistr (=) (@lift2 A B B B f1) (lift2 f2).
Proof. lift_proof distr. Qed.
Global Instance right_distr_lift2 `{distr : RightDistr B B (=) f1 f2} {A} :
RightDistr (=) (@lift2 A B B B f1) (lift2 f2).
Proof. lift_proof distr. Qed.
Global Instance left_id_lift2 `{left_id : LeftId B (=) b f} {A} :
LeftId (=) (const b) (@lift2 A B B B f).
Proof. lift_proof left_id. Qed.
Global Instance right_id_lift2 `{right_id : RightId B (=) b f} {A} :
RightId (=) (const b) (@lift2 A B B B f).
Proof. lift_proof right_id. Qed.
Global Instance left_absorb_lift2 `{left_absorb : LeftAbsorb B (=) b f} {A} :
LeftAbsorb (=) (const b) (@lift2 A B B B f).
Proof. lift_proof left_absorb. Qed.
Global Instance right_absorb_lift2 `{right_absorb : RightAbsorb B (=) b f} {A} :
RightAbsorb (=) (const b) (@lift2 A B B B f).
Proof. lift_proof right_absorb. Qed.
End Algebraic.
Section Special.
Lemma left_distr_compose_lift2 `{distr : LeftDistr B B (=) f h} {A} g1 g2 b :
f b ∘ lift2 h g1 g2 = @lift2 A B B B h (f b ∘ g1) (f b ∘ g2).
Proof. extensionality a; cbn; done. Qed.
Lemma right_distr_compose_lift2 {A B C D}
(f : A -> B) (g1 g2 : B -> C) (h : C -> C -> D) :
lift2 h g1 g2 ∘ f = lift2 h (g1 ∘ f) (g2 ∘ f).
Proof. done. Qed.
Global Instance left_comm_alter_lift2
`{EqDecision A, l_comm : CondLeftComm B (=) P f h} (a : A) :
CondLeftComm (=) (λ g, P (g a)) (alter f a) (lift2 h).
Proof.
intros g1 g2 HP; extensionality a'.
dec (a' = a); simpl_alter; cbn; simpl_alter.
apply l_comm; done. done.
Qed.
End Special.