forked from meta-llama/llama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweb.py
172 lines (136 loc) · 5.26 KB
/
web.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Tuple
import os
import sys
import argparse
import torch
import time
import json
from pathlib import Path
from typing import List
from pydantic import BaseModel
from fastapi import FastAPI, Request, WebSocket
import uvicorn
import torch.distributed as dist
import asyncio
from sse_starlette.sse import EventSourceResponse
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
parser = argparse.ArgumentParser()
parser.add_argument('--ckpt_dir', type=str, required=True)
parser.add_argument('--tokenizer_path', type=str, required=True)
parser.add_argument('--max_seq_len', type=int, default=2048)
parser.add_argument('--max_batch_size', type=int, default=1)
app = FastAPI()
def setup_model_parallel() -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
dist.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(1)
return local_rank, world_size
def load(
ckpt_dir: str,
tokenizer_path: str,
local_rank: int,
world_size: int,
max_seq_len: int,
max_batch_size: int,
) -> LLaMA:
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert world_size == len(
checkpoints
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
ckpt_path = checkpoints[local_rank]
print("Loading")
checkpoint = torch.load(ckpt_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args)
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
generator = LLaMA(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
def init_generator(
ckpt_dir: str,
tokenizer_path: str,
max_seq_len: int = 8192,
max_batch_size: int = 32,
):
local_rank, world_size = setup_model_parallel()
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
generator = load(
ckpt_dir, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size
)
return generator
if __name__ == "__main__":
args = parser.parse_args()
generator = init_generator(
args.ckpt_dir,
args.tokenizer_path,
args.max_seq_len,
args.max_batch_size,
)
class Config(BaseModel):
prompts: List[str]
max_gen_len: int
temperature: float = 0.8
top_p: float = 0.95
if dist.get_rank() == 0:
@app.post("/api/v1/generate")
async def generate(request: Request):
text = (await request.json())["text"]
dist.broadcast_object_list([text, 100028, 0.7, 1])
async def generate_stream():
print("starting stream, text:", text)
for token, word, prob, place, top5 in generator.probs_stream(
text, max_gen_len=100028, temperature=0.7, top_p=1
):
# print(f"{token} {word} {prob} {place} {top5}")
yield {"data": json.dumps({"token": token, "word": word, "probability": prob, "place": place, "top5": top5})}
await asyncio.sleep(0)
yield {"data": "<EOS>"}
# end of stream
return EventSourceResponse(generate_stream())
@app.websocket("/api/v1/generate")
async def generate_ws(websocket: WebSocket):
await websocket.accept()
text = await websocket.receive_text()
dist.broadcast_object_list([text, 100028, 0.7, 1])
recv_tokens = 0
send_tokens = 0
print("starting stream, text:", text)
for token, word, prob, place, top5 in generator.probs_stream(
text, max_gen_len=100028, temperature=0.7, top_p=1
):
# print(f"{token} {word} {prob} {place} {top5}")
await websocket.send_text(json.dumps({"token": token, "word": word, "probability": prob, "place": place, "top5": top5}))
send_tokens += 1
while recv_tokens < send_tokens - 10:
await websocket.receive_text()
recv_tokens += 1
await asyncio.sleep(0)
await websocket.close()
uvicorn.run(app, host="0.0.0.0", port=8042)
else:
while True:
config = [None] * 4
try:
dist.broadcast_object_list(config)
generator.generate(
config[0], max_gen_len=config[1], temperature=config[2], top_p=config[3]
)
except:
pass