-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSNF_all.m
executable file
·97 lines (78 loc) · 2.2 KB
/
SNF_all.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
function [W]=SNF_all(Wall,K,t,ALPHA)
%
if nargin < 2
K = 20;
end
if nargin < 3
K = 20;
end
if nargin < 4
ALPHA = 1;
end
C = length(Wall);
[m,n]=size(Wall{1});
tracenorm = 1;
lambda=0.5;
for i = 1 : C
Wall_d=diag(degrees(Wall{i})'); % degree matrix of subject i
Wall_eig=diag(eigenCentrality(Wall{i})); % eigencentrality matrix of subject i
Wall_cl=diag(closeness(Wall{i})); % closeness matrix of subject i
Wall_topo=cat(3,Wall_d,(Wall_eig),(Wall_cl)); % Tensor stacking the topological measurements
Wall_topolo = permute(Wall_topo,[3 2 1]);
Average= mean(Wall_topolo) ; % Average topological matrix of subject i
Average_all(i,:,:)=Average;
end
%% Supervised multiple kernel learning
[model] = easymkl_train(Average_all,t,lambda, tracenorm);
%% Normalisation of the global matrix
for i = 1 : C
Wall_toponorm=model.weights(i)* squeeze(Average_all(i,:,:));
Wall{i} = Wall{i}./repmat(diag(Wall_toponorm) ,1,n); % Normalized global topology matrix
Wall{i} = (Wall{i} + Wall{i}')/2;
end
%% sparse matrix
for i = 1 : C
newW{i} = FindDominateSet(Wall{i},round(K));
end
Wsum = zeros(m,n);
for i = 1 : C
Wsum = Wsum + Wall{i};
end
for ITER=1:t
for i = 1 : C
%Wall0{i}=newW{i}*(0.95*(Wsum - Wall{i})/(C-1)+0.05*eye(length(Wsum)))*newW{i}';
Wall0{i}=newW{i}'*(Wsum - Wall{i})/(C-1);
end
for i = 1 : C
Wall{i} = BOnormalized(Wall0{i},ALPHA);
end
Wsum = zeros(m,n);
for i = 1 : C
Wsum = Wsum + Wall{i};
end
%
end
W = Wsum/C;
W = W./repmat(sum(W,2),1,n);
W = (W +W'+eye(n))/2;
function W = BOnormalized(W,ALPHA)
if nargin < 2
ALPHA = 1;
end
W = W+ALPHA*eye(length(W));
W = (W +W')/2;
end
function newW = FindDominateSet(W,K)
[m,n]=size(W);
[YW,IW1] = sort(W,2,'descend');
clear YW;
newW=zeros(m,n);
temp=repmat((1:n)',1,K);
I1=(IW1(:,1:K)-1)*m+temp;
newW(I1(:))=W(I1(:));
newW=newW./repmat(sum(newW,2),1,n);
clear IW1;
clear IW2;
clear temp;
end
end