-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsplit_cv.py
executable file
·166 lines (135 loc) · 6.91 KB
/
split_cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 27 15:44:19 2021
@author: Mohammed Amine
"""
import pickle
import math
import os
import torch
import random
import numpy as np
from torch_geometric import utils
from torch_geometric.data import Data
# Splits the dataset into k-folds
def stratify_splits(graphs, n_fold):
graphs_0 = []
graphs_1 = []
for i in range(len(graphs)):
if graphs[i]['label'] == 0:
graphs_0.append(graphs[i])
if graphs[i]['label'] == 1:
graphs_1.append(graphs[i])
graphs_0_folds = []
graphs_1_folds = []
pop_0_fold_size = math.floor(len(graphs_0) / n_fold)
pop_1_fold_size = math.floor(len(graphs_1) / n_fold)
graphs_0_folds = [graphs_0[i:i + pop_0_fold_size] for i in range(0, len(graphs_0), pop_0_fold_size)]
graphs_1_folds = [graphs_1[i:i + pop_1_fold_size] for i in range(0, len(graphs_1), pop_1_fold_size)]
folds = []
for i in range(n_fold):
fold = []
fold.extend(graphs_0_folds[i])
fold.extend(graphs_1_folds[i])
folds.append(fold)
if len(graphs_0_folds) > n_fold:
folds[n_fold-1].extend(graphs_0_folds[n_fold])
if len(graphs_1_folds) > n_fold:
folds[n_fold-1].extend(graphs_1_folds[n_fold])
return folds
# Saves train and test sets.
def split_data_fold(n_fold, dataset):
if not os.path.exists('Folds'+str(n_fold)):
os.makedirs('Folds'+str(n_fold))
with open('data/'+dataset+'/'+dataset+'_edges','rb') as f:
multigraphs = pickle.load(f)
with open('data/'+dataset+'/'+dataset+'_labels','rb') as f:
labels = pickle.load(f)
G_list = []
for i in range(len(labels)):
G_element = {"adj": multigraphs[i],"label": labels[i],"id": i,}
G_list.append(G_element)
folds = stratify_splits(G_list, n_fold)
[random.shuffle(folds[i]) for i in range(len(folds))]
for i in range(len(folds)):
test_folds = []
train_folds = []
test_folds.extend(folds[i])
for j in range(len(folds)):
if j==i :
continue
else :
train_folds.extend(folds[j])
with open('Folds'+str(n_fold)+'/'+'Folds_'+str(n_fold)+'_'+dataset+'_fold_'+str(i)+'_train', 'wb') as f:
pickle.dump(train_folds, f)
with open('Folds'+str(n_fold)+'/'+'Folds_'+str(n_fold)+'_'+dataset+'_fold_'+str(i)+'_test', 'wb') as f:
pickle.dump(test_folds, f)
# Splits and saves views of train and test sets
def split_views(n_fold, dataset):
if not os.path.exists('Folds_views'+str(n_fold)):
os.makedirs('Folds_views'+str(n_fold))
rep = 'Folds'+str(n_fold)+'/'
dest = 'Folds_views'+str(n_fold)+'/'
#dest = 'Folds_'+str(n_fold)+'_views'+str(n_fold)+'/'
for i in range(n_fold):
with open(rep + 'Folds_'+str(n_fold) +'_'+ dataset+'_fold_'+str(i)+'_train','rb') as f:
G_list_train_i = pickle.load(f)
with open(rep + 'Folds_'+str(n_fold) +'_'+ dataset+'_fold_'+str(i)+'_test','rb') as f:
G_list_test_i = pickle.load(f)
n_views = G_list_train_i[0]['adj'].shape[2]
for v in range(n_views):
with open(rep + 'Folds_'+str(n_fold) +'_'+ dataset+'_fold_'+str(i)+'_train','rb') as f:
G_list_train_i = pickle.load(f)
with open(rep + 'Folds_'+str(n_fold) +'_'+ dataset+'_fold_'+str(i)+'_test','rb') as f:
G_list_test_i = pickle.load(f)
G_list_train_i_view_v = G_list_train_i
G_list_test_i_view_v = G_list_test_i
for j in range(len(G_list_train_i)):
G_list_train_i_view_v[j]['adj'] = G_list_train_i[j]['adj'][:,:,v]
for k in range(len(G_list_test_i)):
G_list_test_i_view_v[k]['adj'] = G_list_test_i[k]['adj'][:,:,v]
with open(dest + dataset + '_view_'+str(v)+'_folds_'+ str(n_fold) + '_fold_' + str(i) +'_train','wb') as f:
pickle.dump(G_list_train_i_view_v, f)
with open(dest + dataset + '_view_'+str(v)+'_folds_'+ str(n_fold) + '_fold_' + str(i) + '_test','wb') as f:
pickle.dump(G_list_test_i_view_v, f)
# Transform train and test sets into pytorch-geometric Data.
def transform(n_fold, dataset):
dest = 'Folds_views'+str(n_fold)+'/'
if not os.path.exists('Folds_processed'+str(n_fold)):
os.makedirs('Folds_processed'+str(n_fold))
for cv in range(n_fold):
with open('Folds'+str(n_fold)+'/'+'Folds_'+str(n_fold)+'_'+dataset+'_fold_'+str(cv)+'_train','rb') as f:
G_list_train_i = pickle.load(f)
n_views = G_list_train_i[0]['adj'].shape[2]
for v in range(n_views):
train_list_pg = []
test_list_pg = []
with open(dest + dataset + '_view_'+str(v) +'_folds_'+ str(n_fold) + '_fold_' + str(cv) +'_train','rb') as f:
list_train = pickle.load(f)
with open(dest + dataset + '_view_'+str(v) +'_folds_'+ str(n_fold) + '_fold_' + str(cv) +'_test','rb') as f:
list_test = pickle.load(f)
for i in range(len(list_train)):
adj = torch.from_numpy(list_train[i]['adj'])
edge_index, edge_values = utils.dense_to_sparse(adj)
x = torch.eye(adj.shape[0])
data_train_elt = Data(x=x, edge_index=edge_index, edge_attr=edge_values, adj=adj, y=torch.tensor([list_train[i]['label']]))
train_list_pg.append(data_train_elt)
for j in range(len(list_test)):
adj = torch.from_numpy(list_test[j]['adj'])
edge_index, edge_values = utils.dense_to_sparse(adj)
x = torch.eye(adj.shape[0])
data_test_elt = Data(x=x, edge_index=edge_index, edge_attr=edge_values, adj=adj, y=torch.tensor([list_test[j]['label']]))
test_list_pg.append(data_test_elt)
with open('Folds_processed'+str(n_fold)+'/'+dataset+'_view_'+str(v) +'_folds_'+ str(n_fold) + '_fold_'+str(cv)+'_train_pg','wb') as f:
pickle.dump(train_list_pg, f)
with open('Folds_processed'+str(n_fold)+'/'+dataset+'_view_'+str(v) +'_folds_'+ str(n_fold) + '_fold_'+str(cv)+'_test_pg','wb') as f:
pickle.dump(test_list_pg, f)
# Saves the training and test sets of 5 folds cross validation.
def transform_Data(n_fold, dataset):
torch.manual_seed(0)
np.random.seed(0)
random.seed(0)
if not os.path.exists('Folds_processed'+str(n_fold)+'/'+dataset+'_view_'+str(0)+'_folds_'+ str(n_fold) +'_fold_'+str(0)+'_test_pg'):
split_data_fold(n_fold, dataset)
split_views(n_fold, dataset)
transform(n_fold, dataset)