-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_classifier.py
352 lines (290 loc) · 11 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
"""
Function to evaluate the effectiveness of our MultigraphGNet framework.
---------------------------------------------------------------------
We train two independent SVM classifiers using
1) one global CBT from each class (one-shot CBT baseline)
2) samples augmented by our trained RDGN net.
We augment k samples, you can specify the number of augmented samples by changing the config.K
---------------------------------------------------------------------
Copyright 2022 Furkan Pala, Istanbul Technical University.
All rights reserved.
"""
from utils import generate_cbt_median, vectorize, reconstruct
import os
import numpy as np
import torch
from data import read_simulated_dataset, cast_data
from sklearn.model_selection import KFold
from model import DGN, UNet
import config
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score
import json
def train_classifier(fold_num, seed, k):
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running on {device}")
print("Seed", seed)
print("Fold", fold_num)
print("k", k)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
nc_data = read_simulated_dataset(config.DatasetClass1.path)
asd_data = read_simulated_dataset(config.DatasetClass2.path)
n_samples_nc, n_roi_nc, _, n_views_nc = nc_data.shape
n_samples_asd, n_roi_asd, _, n_views_asd = asd_data.shape
kfold = KFold(n_splits=5, shuffle=True, random_state=seed)
nc_folds = list(kfold.split(nc_data))
asd_folds = list(kfold.split(asd_data))
nc_train_ind, nc_test_ind = nc_folds[fold_num]
asd_train_ind, asd_test_ind = asd_folds[fold_num]
nc_train, nc_test = nc_data[nc_train_ind], nc_data[nc_test_ind]
asd_train, asd_test = asd_data[asd_train_ind], asd_data[asd_test_ind]
nc_train, nc_test = torch.from_numpy(nc_train), torch.from_numpy(nc_test)
asd_train, asd_test = torch.from_numpy(asd_train), torch.from_numpy(asd_test)
nc_train_views_min, nc_train_views_max = nc_train.amin(
dim=(0, 1, 2)
), nc_train.amax(dim=(0, 1, 2))
asd_train_views_min, asd_train_views_max = asd_train.amin(
dim=(0, 1, 2)
), asd_train.amax(dim=(0, 1, 2))
nc_train = (nc_train - nc_train_views_min) / (
nc_train_views_max - nc_train_views_min
)
nc_test = (nc_test - nc_train_views_min) / (nc_train_views_max - nc_train_views_min)
asd_train = (asd_train - asd_train_views_min) / (
asd_train_views_max - asd_train_views_min
)
asd_test = (asd_test - asd_train_views_min) / (
asd_train_views_max - asd_train_views_min
)
nc_train_casted, nc_test_casted = cast_data(nc_train, device), cast_data(
nc_test, device
)
asd_train_casted, asd_test_casted = cast_data(asd_train, device), cast_data(
asd_test, device
)
nc_dgn_weights_path = os.path.join(
f"fold_{fold_num}_seed_{seed}_classname_{config.DatasetClass1.name}",
f"dgn_best_mae_fold_{fold_num}_seed_{seed}_classname_{config.DatasetClass1.name}.pt",
)
nc_rdgn_weights_path = os.path.join(
f"fold_{fold_num}_seed_{seed}_classname_{config.DatasetClass1.name}",
f"rdgn_best_mae_fold_{fold_num}_seed_{seed}_classname_{config.DatasetClass1.name}.pt",
)
asd_dgn_weights_path = os.path.join(
f"fold_{fold_num}_seed_{seed}_classname_{config.DatasetClass2.name}",
f"dgn_best_mae_fold_{fold_num}_seed_{seed}_classname_{config.DatasetClass2.name}.pt",
)
asd_rdgn_weights_path = os.path.join(
f"fold_{fold_num}_seed_{seed}_classname_{config.DatasetClass2.name}",
f"rdgn_best_mae_fold_{fold_num}_seed_{seed}_classname_{config.DatasetClass2.name}.pt",
)
nc_dgn = DGN(n_views_nc, 36, 24, 5).to(device)
nc_rdgn = UNet(1, n_views_nc).to(device)
asd_dgn = DGN(n_views_asd, 36, 24, 5).to(device)
asd_rdgn = UNet(1, n_views_asd).to(device)
nc_dgn.eval()
nc_rdgn.eval()
asd_dgn.eval()
asd_rdgn.eval()
nc_dgn.load_state_dict(
torch.load(nc_dgn_weights_path, map_location=torch.device("cpu"))
)
nc_rdgn.load_state_dict(
torch.load(nc_rdgn_weights_path, map_location=torch.device("cpu"))
)
asd_dgn.load_state_dict(
torch.load(asd_dgn_weights_path, map_location=torch.device("cpu"))
)
asd_rdgn.load_state_dict(
torch.load(asd_rdgn_weights_path, map_location=torch.device("cpu"))
)
nc_cbt_train = (
generate_cbt_median(nc_dgn, nc_train_casted, device).cpu().detach().numpy()
)
asd_cbt_train = (
generate_cbt_median(asd_dgn, asd_train_casted, device).cpu().detach().numpy()
)
nc_train_feats = vectorize(nc_cbt_train)
asd_train_feats = vectorize(asd_cbt_train)
nc = 0
asd = 1
svc = SVC()
svc.fit([nc_train_feats, asd_train_feats], [nc, asd])
nc_test_cbts = np.array(
[
nc_dgn(nc_test_sample).cpu().detach().numpy()
for nc_test_sample in nc_test_casted
]
)
asd_test_cbts = np.array(
[
asd_dgn(asd_test_sample).cpu().detach().numpy()
for asd_test_sample in asd_test_casted
]
)
nc_test_feats = np.array([vectorize(nc_test_cbt) for nc_test_cbt in nc_test_cbts])
asd_test_feats = np.array(
[vectorize(asd_test_cbt) for asd_test_cbt in asd_test_cbts]
)
test_feats = np.concatenate([nc_test_feats, asd_test_feats], axis=0)
test_labels = np.concatenate(
[np.full(nc_test_feats.shape[0], nc), np.full(asd_test_feats.shape[0], asd)]
)
preds = svc.predict(test_feats)
acc = accuracy_score(test_labels, preds)
prec = precision_score(test_labels, preds)
rec = recall_score(test_labels, preds)
f1 = f1_score(test_labels, preds)
print("CBT Oneshot results")
print(
f"{np.count_nonzero((preds - test_labels) == 0)} / {test_labels.shape[0]} samples correctly classified"
)
print(f"Acc: {acc}")
print(f"Prec: {prec}")
print(f"Rec: {rec}")
print(f"F1: {f1}")
nc_cbt_mean, nc_cbt_std = np.mean(vectorize(nc_cbt_train)), np.std(
vectorize(nc_cbt_train)
)
asd_cbt_mean, asd_cbt_std = np.mean(vectorize(asd_cbt_train)), np.std(
vectorize(asd_cbt_train)
)
nc_train_noised_cbts = []
asd_train_noised_cbts = []
for ith_aug in range(k):
nc_noise = (
np.random.normal(nc_cbt_mean, nc_cbt_std, n_roi_nc * (n_roi_nc - 1) // 2)
* 0.2
)
asd_noise = (
np.random.normal(
asd_cbt_mean, asd_cbt_std, n_roi_asd * (n_roi_asd - 1) // 2
)
* 0.2
)
nc_noise[nc_noise < 0] = 0
asd_noise[asd_noise < 0] = 0
nc_noise_m = np.zeros(nc_cbt_train.shape)
asd_noise_m = np.zeros(asd_cbt_train.shape)
nc_noise_m[np.triu_indices_from(nc_noise_m, k=1)] = nc_noise
nc_noise_m = nc_noise_m + nc_noise_m.T
asd_noise_m[np.triu_indices_from(asd_noise_m, k=1)] = asd_noise
asd_noise_m = asd_noise_m + asd_noise_m.T
nc_cbt_e = nc_cbt_train + nc_noise_m
asd_cbt_e = asd_cbt_train + asd_noise_m
nc_train_noised_cbts.append(nc_cbt_e)
asd_train_noised_cbts.append(asd_cbt_e)
nc_train_aug = np.stack(
[reconstruct(nc_rdgn, cbt) for cbt in nc_train_noised_cbts], axis=0
)
asd_train_aug = np.stack(
[reconstruct(asd_rdgn, cbt) for cbt in asd_train_noised_cbts],
axis=0,
)
nc_train_aug_feats = np.array([vectorize(sample) for sample in nc_train_aug])
asd_train_aug_feats = np.array([vectorize(sample) for sample in asd_train_aug])
nc_test_aug_feats = np.array(
[vectorize(sample.cpu().detach().numpy()) for sample in nc_test]
)
asd_test_aug_feats = np.array(
[vectorize(sample.cpu().detach().numpy()) for sample in asd_test]
)
svc_aug = SVC()
svc_aug_train_feats = np.concatenate([nc_train_aug_feats, asd_train_aug_feats])
svc_aug_train_labels = np.concatenate(
[
np.full(nc_train_aug_feats.shape[0], nc),
np.full(asd_train_aug_feats.shape[0], asd),
]
)
svc_aug.fit(svc_aug_train_feats, svc_aug_train_labels)
svc_aug_test_feats = np.concatenate([nc_test_aug_feats, asd_test_aug_feats])
svc_aug_test_labels = np.concatenate(
[
np.full(nc_test_aug_feats.shape[0], nc),
np.full(asd_test_aug_feats.shape[0], asd),
]
)
preds_aug = svc_aug.predict(svc_aug_test_feats)
acc_aug = accuracy_score(svc_aug_test_labels, preds_aug)
prec_aug = precision_score(svc_aug_test_labels, preds_aug)
rec_aug = recall_score(svc_aug_test_labels, preds_aug)
f1_aug = f1_score(svc_aug_test_labels, preds_aug)
print("Augmented results")
print(
f"{np.count_nonzero((preds_aug - svc_aug_test_labels) == 0)} / {svc_aug_test_labels.shape[0]} samples correctly classified"
)
print(f"Acc: {acc_aug}")
print(f"Prec: {prec_aug}")
print(f"Rec: {rec_aug}")
print(f"F1: {f1_aug}")
return (
acc,
prec,
rec,
f1,
acc_aug,
prec_aug,
rec_aug,
f1_aug,
preds,
test_labels,
preds_aug,
svc_aug_test_labels,
)
if __name__ == "__main__":
k = config.K
seed = config.SEED
results = {
"seed": seed,
"k": k,
"baseline_acc": [],
"baseline_prec": [],
"baseline_rec": [],
"baseline_f1": [],
"aug_acc": [],
"aug_prec": [],
"aug_rec": [],
"aug_f1": [],
}
for i in range(config.N_FOLDS):
(
acc,
prec,
rec,
f1,
acc_aug,
prec_aug,
rec_aug,
f1_aug,
preds,
test_labels,
preds_aug,
aug_test_labels,
) = train_classifier(i, seed, k)
print()
results["baseline_acc"].append(acc)
results["baseline_prec"].append(prec)
results["baseline_rec"].append(rec)
results["baseline_f1"].append(f1)
results["aug_acc"].append(acc_aug)
results["aug_prec"].append(prec_aug)
results["aug_rec"].append(rec_aug)
results["aug_f1"].append(f1_aug)
results["baseline_acc"].append(np.mean(results["baseline_acc"]))
results["baseline_prec"].append(np.mean(results["baseline_prec"]))
results["baseline_rec"].append(np.mean(results["baseline_rec"]))
results["baseline_f1"].append(np.mean(results["baseline_f1"]))
results["aug_acc"].append(np.mean(results["aug_acc"]))
results["aug_prec"].append(np.mean(results["aug_prec"]))
results["aug_rec"].append(np.mean(results["aug_rec"]))
results["aug_f1"].append(np.mean(results["aug_f1"]))
if not os.path.isdir("classifier_results"):
os.makedirs("classifier_results")
with open(
f"classifier_results/classifier_results_seed_{seed}_k_{k}.json", "w"
) as f:
f.write(json.dumps(results))