-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhelper.py
executable file
·198 lines (165 loc) · 6.89 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from sklearn.model_selection import KFold
import torch
from torch_geometric.data import Data
import numpy as np
import scipy.io
import os
import matplotlib.pyplot as plt
#set seed for reproducibility
torch.manual_seed(35813)
np.random.seed(35813)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def create_better_simulated(N_Subjects, N_ROIs):
"""
Simulated dataset distributions are inspired from real measurements
so this function creates better dataset for demo.
However, number of views are hardcoded.
"""
features = np.triu_indices(N_ROIs)[0].shape[0]
view1 = np.random.normal(0.1,0.069, (N_Subjects, features))
view1 = view1.clip(min = 0)
view1 = np.array([antiVectorize(v, N_ROIs) for v in view1])
view2 = np.random.normal(0.72,0.5, (N_Subjects, features))
view2 = view2.clip(min = 0)
view2 = np.array([antiVectorize(v, N_ROIs) for v in view2])
view3 = np.random.normal(0.32,0.20, (N_Subjects, features))
view3 = view3.clip(min = 0)
view3 = np.array([antiVectorize(v, N_ROIs) for v in view3])
view4 = np.random.normal(0.03,0.015, (N_Subjects, features))
view4 = view4.clip(min = 0)
view4 = np.array([antiVectorize(v, N_ROIs) for v in view4])
return np.stack((view1, view2, view3, view4), axis = 3)
def simulate_dataset(N_Subjects, N_ROIs, N_views):
"""
Creates random dataset
Args:
N_Subjects: number of subjects
N_ROIs: number of region of interests
N_views: number of views
Return:
dataset: random dataset with shape [N_Subjects, N_ROIs, N_ROIs, N_views]
"""
features = np.triu_indices(N_ROIs)[0].shape[0]
views = []
for _ in range(N_views):
view = np.random.uniform(0.1,2, (N_Subjects, features))
view = np.array([antiVectorize(v, N_ROIs) for v in view])
views.append(view)
return np.stack(views, axis = 3)
def get_std_and_mean(list_of_tensors):
tensor = np.array(list_of_tensors)
tensor_means = np.mean(tensor[:,:,:,:], axis=(0,1,2))
tensor_std = np.std(tensor[:,:,:,:], axis=(0,1,2))
return tensor_std, tensor_means
def plot_graphs(losses_array, labels, name):
x = range(0, len(losses_array[0]) * 10, 10)
if(len(losses_array) == 1):
plt.plot(x, losses_array[0])
plt.savefig(name + ".png")
plt.close()
return
for losses in losses_array:
plt.plot(x, losses)
plt.legend(labels, loc='upper right')
plt.savefig(name + ".png")
plt.close()
def generate_same_folds_for_matlab(data_path, n_folds):
for i in range(n_folds):
print("********* FOLD {} *********".format(i))
train_data, test_data, _, _ = preprocess_data_array(data_path, number_of_folds=n_folds, current_fold_id=i)
#Uncomment these three lines to generate exactly same train and test for netNorm
mdict = {"train": np.array(train_data).swapaxes(3,0), "test": np.array(test_data).swapaxes(3,0)}
save_path = "/data_{}_{}.mat".format(data_path.split("/")[-1], i)
scipy.io.savemat("./netNorm/dataset" + save_path , mdict)
def clear_dir(dir_name):
for file in os.listdir(dir_name):
os.remove(os.path.join(dir_name, file))
def antiVectorize(vec, m):
M = np.zeros((m,m))
t = 0
for i in range(0,m - 1):
for j in range(i+1, m):
M[i,j] = vec[t]
M[j,i] = vec[t]
t = t + 1
return M
def Vectorize(matrix):
return matrix[np.triu_indices(matrix.shape[0], k = 1)]
def binary_correspondence(arr1, arr2):
count = 0
for a in arr1:
if (a in arr2):
count += 1
return count
def read_all_dataset(root, read_indices = None, connection_mask = None):
print("reading " + root)
files = os.listdir(root)
all_data = []
#try:
files = sorted(files, key=lambda f: int(f.split(".mat")[0].split("Sub")[1]))[:155]
for i, file in enumerate(files):
if read_indices == None:
mvbn = scipy.io.loadmat(root + "/" + file)["views"]
if connection_mask is not None:
mvbn[connection_mask != 1] = 0
all_data.append(mvbn)
else:
if (i in read_indices):
mvbn = scipy.io.loadmat(root + "/" + file)["views"]
if connection_mask is not None:
mvbn[connection_mask != 1] = 0
all_data.append(mvbn)
return [np.array(data) for data in all_data]
def preprocess_data_array(data_path, number_of_folds, current_fold_id):
X = np.load(data_path)
kf = KFold(n_splits=number_of_folds)
split_indices = kf.split(range(X.shape[0]))
train_indices, test_indices = [(list(train), list(test)) for train, test in split_indices][current_fold_id]
#Split train and test
X_train = X[train_indices]
X_test = X[test_indices]
train_channel_means = np.mean(X_train, axis=(0,1,2))
train_channel_std = np.std(X_train, axis=(0,1,2))
return X_train, X_test, train_channel_means, train_channel_std
def cast_data(array_of_tensors, subject_type = None, flat_mask = None):
"""
Casting for NNConv
"""
N_ROI = array_of_tensors[0].shape[0]
CHANNELS = array_of_tensors[0].shape[2]
dataset = []
for mat in array_of_tensors:
#Allocate numpy arrays
edge_index = np.zeros((2, N_ROI * N_ROI))
edge_attr = np.zeros((N_ROI * N_ROI,CHANNELS))
x = np.zeros((N_ROI, 1))
y = np.zeros((1,))
counter = 0
for i in range(N_ROI):
for j in range(N_ROI):
edge_index[:, counter] = [i, j]
edge_attr[counter, :] = mat[i, j]
counter += 1
#Fill node feature matrix (no features every node is 1)
for i in range(N_ROI):
x[i,0] = 1
#Get graph labels
y[0] = None
if flat_mask is not None:
edge_index_masked = []
edge_attr_masked = []
for i,val in enumerate(flat_mask):
if val == 1:
edge_index_masked.append(edge_index[:,i])
edge_attr_masked.append(edge_attr[i,:])
edge_index = np.array(edge_index_masked).T
edge_attr = edge_attr_masked
edge_index = torch.tensor(edge_index, dtype = torch.long)
edge_attr = torch.tensor(edge_attr, dtype = torch.float)
x = torch.tensor(x, dtype = torch.float)
y = torch.tensor(y, dtype = torch.float)
con_mat = torch.tensor(mat, dtype=torch.float)
data = Data(x = x, edge_index=edge_index, edge_attr=edge_attr, con_mat = con_mat, y=y, label = subject_type)
dataset.append(data)
return dataset