-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimizer.py
44 lines (30 loc) · 2 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
class OptimizerAE(object):
def __init__(self, preds, labels, pos_weight, norm, d_real, d_fake):
preds_sub = preds
labels_sub = labels
self.real = d_real
# Discrimminator Loss
self.dc_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(self.real), logits=self.real,name='dclreal'))
self.dc_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_fake), logits=d_fake,name='dcfake'))
self.dc_loss = self.dc_loss_fake + self.dc_loss_real
# Generator loss
generator_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_fake), logits=d_fake, name='gl'))
self.cost = norm * tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits(logits=preds_sub, targets=labels_sub, pos_weight=pos_weight))
self.generator_loss = generator_loss + self.cost
self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) # Adam Optimizer
all_variables = tf.trainable_variables()
dc_var = [var for var in all_variables if 'dc_' in var.name]
en_var = [var for var in all_variables if 'e_' in var.name]
with tf.variable_scope(tf.get_variable_scope()):
self.discriminator_optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.discriminator_learning_rate,
beta1=0.9, name='adam1').minimize(self.dc_loss, var_list=dc_var) #minimize(dc_loss_real, var_list=dc_var)
self.generator_optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.discriminator_learning_rate,
beta1=0.9, name='adam2').minimize(self.generator_loss, var_list=en_var)
self.opt_op = self.optimizer.minimize(self.cost)
self.grads_vars = self.optimizer.compute_gradients(self.cost)