-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathconfig.py
executable file
·87 lines (67 loc) · 2.58 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#Train on simulated data (S, normal random dist.) or external data (E)
Dataset = "S"
#Path for the dataset (binary file in NumPy .npy format) with shape
#[N_Subjects, N_Nodes, N_Nodes, N_Views]
#ignored if Dataset = S
Path = "./simulated dataset/example.py"
#Number of simulated subjects (overwriten if Dataset = "E")
N_Subjects = 100
#Number of nodes for simulated brain networks (overwriten if Dataset = "E")
N_Nodes = 35
#Number of brain views (overwriten if Dataset = "E")
N_views = 4
#Number of training epochs
N_max_epochs = 100
#Apply early stopping True/False
early_stop = True
#Random subset size for SNL function
random_sample_size = 10
#Number of cross validation folds
n_folds = 5
#Learning Rate for Adam optimizer
lr = 0.0005
#Name of the model
model_name = "DGN_TEST"
#dimension of embeddings output by the first GDL layer (for each ROI)
CONV1 = 36
#dimension of embeddings output by the second GDL layer (for each ROI)
CONV2 = 24
#dimension of embeddings output by the third GDL layer (for each ROI)
CONV3 = 5
#----------------------------------------------------------------------------#
#----------------------------------------------------------------------------#
# Below is not to be modified manually #
#----------------------------------------------------------------------------#
#----------------------------------------------------------------------------#
import numpy as np
import helper
if Dataset.lower() not in ["e", "E", "s", "S"]:
raise ValueError("Dataset options are E or S.")
if (Dataset.lower() == "e"):
X = np.load(Path)
N_Subjects = X.shape[0]
N_Nodes = X.shape[1]
N_views = X.shape[3]
else:
X = helper.create_better_simulated(N_Subjects, N_Nodes) if N_views == 4 else helper.simulate_dataset(N_Subjects, N_Nodes, N_views)
CONFIG = {
"X": X,
"N_ROIs": X.shape[1],
"N_views": X.shape[3],
"N_max_epochs": N_max_epochs,
"n_folds": n_folds,
"random_sample_size": random_sample_size,
"early_stop": early_stop,
"model_name": model_name
}
MODEL_PARAMS = {
"N_ROIs": N_Nodes,
"learning_rate" : lr,
"n_attr": X.shape[3],
"Linear1" : {"in": N_views, "out": CONV1},
"conv1": {"in" : 1, "out": CONV1},
"Linear2" : {"in": N_views, "out": CONV1*CONV2},
"conv2": {"in" : CONV1, "out": CONV2},
"Linear3" : {"in": N_views, "out": CONV2*CONV3},
"conv3": {"in" : CONV2, "out": CONV3}
}