-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_utils.py
executable file
·301 lines (228 loc) · 11.1 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import argparse
import os
import os.path as osp
import numpy as np
import math
import itertools
import copy
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Sequential, Linear, ReLU, Sigmoid, Tanh, Dropout, LeakyReLU
from torch.autograd import Variable
from torch.distributions import normal
from sklearn import preprocessing
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import KFold
from torch_geometric.data import Data, InMemoryDataset, DataLoader
from torch_geometric.nn import NNConv, BatchNorm, EdgePooling, TopKPooling, global_add_pool
from torch_geometric.utils import get_laplacian, to_dense_adj
import matplotlib.pyplot as plt
class MRDataset(InMemoryDataset):
def __init__(self, root, src, dest, h, connectomes=1, subs=1000, transform=None, pre_transform=None):
"""
src: Input to the model
dest: Target output of the model
h: Load LH or RH data
subs: Maximum number of subjects
Note: Since we do not reprocess the data if it is already processed, processed files should be
deleted if there is any change in the data we are reading.
"""
self.src, self.dest, self.h, self.subs, self.connectomes = src, dest, h, subs, connectomes
super(MRDataset, self).__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
def data_read(self, h="lh", nbr_of_subs=1000, connectomes=1):
"""
Takes the (maximum) number of subjects and hemisphere we are working on
as arguments, returns t0, t1, t2's of the connectomes for each subject
in a single torch.FloatTensor.
"""
subs = None # Subjects
data_path = "../data"
for i in range(1, nbr_of_subs):
s = data_path + "/cortical." + h.lower() + ".ShapeConnectivityTensor_OAS2_"
if i < 10:
s += "0"
s += "00" + str(i) + "_"
for mr in ["MR1", "MR2"]:
try: # Sometimes subject we are looking for does not exist
t0 = np.loadtxt(s + mr + "_t0.txt")
t1 = np.loadtxt(s + mr + "_t1.txt")
t2 = np.loadtxt(s + mr + "_t2.txt")
except:
continue
# Read the connectomes at t0, t1 and t2, then stack them
read_limit = (connectomes * 35)
t_stacked = np.vstack((t0[:read_limit, :], t1[:read_limit, :], t2[:read_limit, :]))
tsr = t_stacked.reshape(3, connectomes * 35, 35)
if subs is None: # If first subject
subs = tsr
else:
subs = np.vstack((subs, tsr))
# Then, reshape to match the shape of the model's expected input shape
# final_views should be a torch tensor or Pytorch Geometric complains
final_views = torch.tensor(np.moveaxis(subs.reshape(-1, 3, (connectomes * 35), 35), 1, -1), dtype=torch.float)
return final_views
@property
def processed_file_names(self):
return [
"data_" + str(self.connectomes) + "_" + self.h.lower() + "_" + str(self.subs) + "_" + str(self.src) + str(
self.dest) + ".pt"]
def process(self):
"""
Prepares the data for PyTorch Geometric.
"""
unprocessed = self.data_read(self.h, self.subs)
num_samples, timestamps = unprocessed.shape[0], unprocessed.shape[-1]
assert 0 <= self.dest <= timestamps
assert 0 <= self.src <= timestamps
# Turn the data into PyTorch Geometric Graphs
data_list = list()
for sample in range(num_samples):
x = unprocessed[sample, :, :, self.src]
y = unprocessed[sample, :, :, self.dest]
edge_index, edge_attr, rows, cols = create_edge_index_attribute(x)
y_edge_index, y_edge_attr, _, _ = create_edge_index_attribute(y)
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr,
y=y, y_edge_index=y_edge_index, y_edge_attr=y_edge_attr)
data.num_nodes = rows
data_list.append(data)
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
class MRDataset2(InMemoryDataset):
def __init__(self, root, h, connectomes=1, subs=1000, transform=None, pre_transform=None):
"""
src: Input to the model
dest: Target output of the model
h: Load LH or RH data
subs: Maximum number of subjects
Note: Since we do not reprocess the data if it is already processed, processed files should be
deleted if there is any change in the data we are reading.
"""
self.h, self.subs, self.connectomes = h, subs, connectomes
super(MRDataset2, self).__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
def data_read(self, h="lh", nbr_of_subs=1000, connectomes=1):
"""
Takes the (maximum) number of subjects and hemisphere we are working on
as arguments, returns t0, t1, t2's of the connectomes for each subject
in a single torch.FloatTensor.
"""
subs = None # Subjects
data_path = "data"
for i in range(1, nbr_of_subs):
s = data_path + "/cortical." + h.lower() + ".ShapeConnectivityTensor_OAS2_"
if i < 10:
s += "0"
s += "00" + str(i) + "_"
for mr in ["MR1", "MR2"]:
try: # Sometimes subject we are looking for does not exist
t0 = np.loadtxt(s + mr + "_t0.txt")
t1 = np.loadtxt(s + mr + "_t1.txt")
t2 = np.loadtxt(s + mr + "_t2.txt")
except:
continue
# Read the connectomes at t0, t1 and t2, then stack them
read_limit = (connectomes * 35)
t_stacked = np.vstack((t0[:read_limit, :], t1[:read_limit, :], t2[:read_limit, :]))
tsr = t_stacked.reshape(3, connectomes * 35, 35)
if subs is None: # If first subject
subs = tsr
else:
subs = np.vstack((subs, tsr))
# Then, reshape to match the shape of the model's expected input shape
# final_views should be a torch tensor or Pytorch Geometric complains
final_views = torch.tensor(np.moveaxis(subs.reshape(-1, 3, (connectomes * 35), 35), 1, -1), dtype=torch.float)
return final_views
@property
def processed_file_names(self):
return [
"2data_" + str(self.connectomes) + "_" + self.h.lower() + "_" + str(self.subs) + "_" + ".pt"]
def process(self):
"""
Prepares the data for PyTorch Geometric.
"""
unprocessed = self.data_read(self.h, self.subs)
num_samples, timestamps = unprocessed.shape[0], unprocessed.shape[-1]
# Turn the data into PyTorch Geometric Graphs
data_list = list()
for sample in range(num_samples):
x = unprocessed[sample, :, :, 0]
y = unprocessed[sample, :, :, 1]
y2 = unprocessed[sample, :, :, 2]
edge_index, edge_attr, rows, cols = create_edge_index_attribute(x)
y_edge_index, y_edge_attr, _, _ = create_edge_index_attribute(y)
y2_edge_index, y2_edge_attr, _, _ = create_edge_index_attribute(y2)
y_distr = normal.Normal(y.mean(dim=1), y.std(dim=1))
y2_distr = normal.Normal(y2.mean(dim=1), y2.std(dim=1))
y_lap_ei, y_lap_ea = get_laplacian(y_edge_index, y_edge_attr)
y2_lap_ei, y2_lap_ea = get_laplacian(y2_edge_index, y2_edge_attr)
y_lap = to_dense_adj(y_lap_ei, edge_attr=y_lap_ea)
y2_lap = to_dense_adj(y2_lap_ei, edge_attr=y2_lap_ea)
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr,
y=y, y_edge_index=y_edge_index, y_edge_attr=y_edge_attr, y_distr=y_distr,
y2=y2, y2_edge_index=y2_edge_index, y2_edge_attr=y2_edge_attr, y2_distr=y2_distr,
y_lap=y_lap, y2_lap=y2_lap)
data.num_nodes = rows
data_list.append(data)
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
def create_edge_index_attribute(adj_matrix):
"""
Given an adjacency matrix, this function creates the edge index and edge attribute matrix
suitable to graph representation in PyTorch Geometric.
"""
rows, cols = adj_matrix.shape[0], adj_matrix.shape[1]
edge_index = torch.zeros((2, rows * cols), dtype=torch.long)
edge_attr = torch.zeros((rows * cols, 1), dtype=torch.float)
counter = 0
for src, attrs in enumerate(adj_matrix):
for dest, attr in enumerate(attrs):
edge_index[0][counter], edge_index[1][counter] = src, dest
edge_attr[counter] = attr
counter += 1
return edge_index, edge_attr, rows, cols
def swap(data):
# Swaps the x & y values of the given graph
edge_i, edge_attr, _, _ = create_edge_index_attribute(data.y)
data_s = Data(x=data.y, edge_index=edge_i, edge_attr=edge_attr, y=data.x)
return data_s
def cross_val_indices(folds, num_samples, new=False):
"""
Takes the number of inputs and number of folds.
Determines indices to go into validation split in each turn.
Saves the indices on a file for experimental reproducibility and does not overwrite
the already determined indices unless new=True.
"""
kf = KFold(n_splits=folds, shuffle=True)
train_indices = list()
val_indices = list()
try:
if new == True:
raise IOError
with open("../data/" + str(folds) + "_" + str(num_samples) + "cv_train", "rb") as f:
train_indices = pickle.load(f)
with open("../data/" + str(folds) + "_" + str(num_samples) + "cv_val", "rb") as f:
val_indices = pickle.load(f)
except IOError:
for tr_index, val_index in kf.split(np.zeros((num_samples, 1))):
train_indices.append(tr_index)
val_indices.append(val_index)
with open("../data/" + str(folds) + "_" + str(num_samples) + "cv_train", "wb") as f:
pickle.dump(train_indices, f)
with open("../data/" + str(folds) + "_" + str(num_samples) + "cv_val", "wb") as f:
pickle.dump(val_indices, f)
return train_indices, val_indices
def timer(start, end):
hours, rem = divmod(end-start, 3600)
minutes, seconds = divmod(rem, 60)
print("{:0>2}:{:0>2}:{}".format(int(hours), int(minutes), seconds))