forked from scpowers/lazor_solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBoard.py
359 lines (294 loc) · 15.8 KB
/
Board.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import numpy as np
from numba import jit
from numba.core.errors import NumbaPendingDeprecationWarning
from render_board import render_board
import warnings
warnings.simplefilter('ignore', category=NumbaPendingDeprecationWarning)
class Board:
"""
A class to represent a Lazors puzzle board with all relevant blocks placed.
**Attributes**
board: *list, list, int*
A double-nested list representing the cells and blocks on the board:
0 - free
1 - reflective block (placed)
2 - refractive block (placed)
3 - opaque block (placed)
4 - hole
5 - reflective block (fixed)
6 - refractive block (fixed)
7 - opaque block (fixed)
laser_pos: *list, list, int*
A double-nested list holding [x, y] coords of the laser sources
laser_dir: *list, list, int*
A double-nested list holding [vx, vy] directions of the laser sources
laser_visited_pts: *list, list, int*
A double-nested list holding [x, y] coords of points that the laser travels to given this board config
file_ptr: *str*
A string pointing to the .bff file that was used to generate this board
**Methods**
get_laser_path: computes the path that the laser takes given a board configuration
args - None
returns - None
render_board: saves the board as a visually-interpretable grid image
args - None
returns - None
"""
def __init__(self, initial_board, laser_pos, laser_dir, file_ptr):
"""
Board class constructor
**Parameters**
initial_board: *list, list, int*
A double-nested list representing the cells and blocks on the board:
laser_pos: *list, list, int*
A double-nested list holding [x, y] coords of the laser sources
laser_dir: *list, list, int*
A double-nested list holding [vx, vy] directions of the laser sources
**Returns**
None
"""
self.board = initial_board # initial config of board (with everything on it)
self.laser_pos = laser_pos # [x, y] position(s) of laser source(s) on grid where cells are 3x3 across
self.laser_dir = laser_dir # [dx, dy] direction(s) of laser source(s) on grid where cells are 3x3 across
self.file_ptr = file_ptr
self.laser_visited_pts = [] # initialize empty list, need it later for rendering
def get_laser_path(self):
"""
Compute the path that the laser source(s) take through the given board configuration.
**Parameters**
None
**Returns**
None
"""
# convert board into grid using same convention as .bff file
new_board = np.zeros((2*len(self.board) + 1, 2*len(self.board) + 1))
for i, row in enumerate(self.board):
for j, cell in enumerate(row):
if cell == 0:
continue
new_board[2*i + 1, 2*j + 1] = cell
# NOTE: transpose because coord system is opposite order from (row, col) accessing in the array
new_board = np.transpose(new_board)
# initialize dict where each key is a laser initial position/direction pair (unique) and
# each value is a list of visited coordinates in order [[x1, y1], [x2, y2]]
total_visited_pts = {}
for i, pos in enumerate(self.laser_pos):
total_visited_pts[(tuple(pos), tuple(self.laser_dir[i]))] = []
# now compute the traveled path for each laser source
for i, pos in enumerate(self.laser_pos):
# initialize dict where each key is a cell center's coordinates, the incoming pos, and the incoming
# direction, and each value is the alternate backtracking route available
# (a new position and a new direction)
backtracking_options = {}
# initialize stack, build from starting point, backtrack if you exit grid or hit opaque block,
# only able to continue after backtracking if another route exists because of a refraction block
laser_path = [pos]
direction = self.laser_dir[i] # initial direction pulled from .bff file
laser_dir_history = [direction] # store history of directions for backtracking
max_path_length = 50
iter = 0
# keep going until you've emptied the stack or you hit the upper bound on path length
# (prevents infinite loops)
while len(laser_path) > 0 and iter < max_path_length:
# add most recent position to total visited pts for this laser source if it's within the board
latest_pos = laser_path[-1]
direction = laser_dir_history[-1]
if pos_check(new_board, latest_pos):
total_visited_pts[(tuple(pos), tuple(self.laser_dir[i]))].append(latest_pos)
# get the coordinates of the next relevant cell center (relevant for path behavior at next step)
next_relevant_center_coords = get_next_relevant_cell_center(latest_pos, direction)
# check cell behavior at the next relevant center
should_path_end = should_laser_path_end(new_board, next_relevant_center_coords)
if should_path_end:
# backtrack until either your next relevant cell center is a refractive block or the queue empties
laser_path.pop()
laser_dir_history.pop()
if len(laser_path) == 0:
break
backtracked_center_coords = get_next_relevant_cell_center(laser_path[-1], laser_dir_history[-1])
backtracked_center_val = new_board[backtracked_center_coords[0], backtracked_center_coords[1]]
while len(laser_path) > 0 and \
(backtracked_center_val != 2 and backtracked_center_val != 6):
laser_path.pop()
laser_dir_history.pop()
if len(laser_path) == 0:
break
backtracked_center_coords = get_next_relevant_cell_center(laser_path[-1], laser_dir_history[-1])
backtracked_center_val = new_board[backtracked_center_coords[0], backtracked_center_coords[1]]
else:
# get the position and direction of the next step in the laser path
next_pos, next_direction = get_next_laser_pos_dir(new_board, next_relevant_center_coords,
latest_pos, direction, backtracking_options)
# edge case: you already tried the alternative route from a refractive block
if next_pos is None:
# backtrack until either your next relevant cell center is a different refractive block
# or the queue empties
laser_path.pop()
laser_dir_history.pop()
if len(laser_path) == 0:
break
backtracked_center_coords = get_next_relevant_cell_center(laser_path[-1], laser_dir_history[-1])
tmp_key = (tuple(backtracked_center_coords), tuple(laser_path[-1]),
tuple(laser_dir_history[-1]))
backtracked_center_val = new_board[backtracked_center_coords[0],
backtracked_center_coords[1]]
found_diff_refractive_block = \
(backtracked_center_val == 2 or backtracked_center_val == 6) and \
backtracking_options[tmp_key] != []
while not found_diff_refractive_block and len(laser_path) > 0:
laser_path.pop()
laser_dir_history.pop()
if len(laser_path) == 0:
break
backtracked_center_coords = get_next_relevant_cell_center(laser_path[-1],
laser_dir_history[-1])
tmp_key = (tuple(backtracked_center_coords), tuple(laser_path[-1]),
tuple(laser_dir_history[-1]))
backtracked_center_val = new_board[backtracked_center_coords[0],
backtracked_center_coords[1]]
found_diff_refractive_block = \
(backtracked_center_val == 2 or backtracked_center_val == 6) and \
backtracking_options[tmp_key] != []
else:
# update
laser_path.append(next_pos)
laser_dir_history.append(next_direction)
iter += 1
# store visited points as attribute
self.laser_visited_pts = total_visited_pts
def render_board(self):
"""
Render the board configuration as a visually-interpretable grid image.
**Parameters**
None
**Returns**
None
"""
laser_list = [pos + self.laser_dir[i] for i, pos in enumerate(self.laser_pos)]
render_board(self.board, laser_list, self.file_ptr)
@jit(nopython=True)
def pos_check(coord_board, coords):
"""
Check if a given position is within the gridded board.
**Parameters**
coord_board: *list, list, int*
Board represented by grid where each cell is 2 units wide
coords: *list, int*
[x, y] coordinate pair to check
**Returns**
*Boolean*
True if the given coordinates are within the board
"""
return 0 <= coords[0] < coord_board.shape[0] and 0 <= coords[1] < coord_board.shape[1]
@jit(nopython=True)
def get_next_relevant_cell_center(latest_pos, direction):
"""
Get the next relevant cell center coordinates.
**Parameters**
latest_pos: *list, int*
The latest position of the laser's path
direction: *list, int*
The latest direction of the laser's path
**Returns**
next_relevant_center_coords: *list, int*
The coordinates of the next relevant cell center (in the path of the laser)
"""
# case 1: latest position is within a vertical slice between cells
if latest_pos[0] % 2 == 0:
if direction[0] > 0:
next_relevant_center_coords = [latest_pos[0] + 1, latest_pos[1]]
else:
next_relevant_center_coords = [latest_pos[0] - 1, latest_pos[1]]
# case 2: latest position is within a horizontal slice between cells
else:
if direction[1] > 0:
next_relevant_center_coords = [latest_pos[0], latest_pos[1] + 1]
else:
next_relevant_center_coords = [latest_pos[0], latest_pos[1] - 1]
return next_relevant_center_coords
def get_next_laser_pos_dir(new_board, next_relevant_center_coords, latest_pos, direction, backtracking_options):
"""
Get the next position and direction of the laser path.
**Parameters**
new_board: *list, list, int*
Double-nested list representing the current board state
next_relevant_center_coords: *list, int*
The coordinates of the next cell center in the path of the laser
latest_pos: *list, int*
The latest position of the laser's path
direction: *list, int*
The latest direction of the laser's path
backtracking_options: *dict*
Dictionary holding backtracking options for refractive cells, where keys are
((center_x, center_y), (latest_pos_x, latest_pos_y), (direction_x, direction_y))
and values are [[latest_pos_x, latest_pos_y], [next_direction_x, next_direction_y]]
**Returns**
next_pos: *list, int*
The coordinates of the next position in the laser path
next_direction: *list, int*
The next direction that the laser path will take
"""
next_relevant_cell_val = new_board[next_relevant_center_coords[0], next_relevant_center_coords[1]]
# case 1: the next relevant cell is empty or a hole
if next_relevant_cell_val == 0 or next_relevant_cell_val == 4:
next_pos = [latest_pos[0] + direction[0], latest_pos[1] + direction[1]] # move normally by one step
next_direction = direction # direction is unchanged
# case 2: the next relevant cell is a reflective cell, so change direction
elif next_relevant_cell_val == 1 or next_relevant_cell_val == 5:
next_pos = latest_pos # position is unchanged
# if you're in a vertical slice between cells, just changing dx
if latest_pos[0] % 2 == 0:
next_direction = [-1 * direction[0], direction[1]]
else:
next_direction = [direction[0], -1 * direction[1]]
# case 3: the next relevant cell is a refractive cell, so initially pass through it but backtrack later and reflect
elif next_relevant_cell_val == 2 or next_relevant_cell_val == 6:
# first, check if we've encountered this before (at the same previous position and direction)
tmp_key = (tuple(next_relevant_center_coords), tuple(latest_pos), tuple(direction))
if tmp_key not in list(backtracking_options.keys()):
# create entry with the other next_pos and next_direction for when you backtrack here
if latest_pos[0] % 2 == 0:
next_direction = [-1 * direction[0], direction[1]]
else:
next_direction = [direction[0], -1 * direction[1]]
backtracking_options[tmp_key] = [latest_pos, next_direction]
# move normally through the refractive block like it's clear
next_pos = [latest_pos[0] + direction[0], latest_pos[1] + direction[1]] # move normally by one step
next_direction = direction # direction is unchanged
# this cell came back up because you backtracked, so take the other route if you haven't already
else:
if len(backtracking_options[tmp_key]) == 0:
# this is when you already backtracked to the alternate route
next_pos = None
next_direction = None
else:
next_pos = backtracking_options[tmp_key][0]
next_direction = backtracking_options[tmp_key][1]
# wipe the alternate route so you don't take it again
backtracking_options[tmp_key] = []
# case 4: the next relevant cell is an opaque cell, so the beam stops here
elif next_relevant_cell_val == 3 or next_relevant_cell_val == 7:
next_pos = None
next_direction = None
else:
return
return next_pos, next_direction
@jit(nopython=True)
def should_laser_path_end(new_board, next_relevant_center_coords):
"""
Determine whether the next relevant cell implies that the laser path should end at this point.
**Parameters**
new_board: *list, list, int*
Double-nested list representing the current board state
next_relevant_center_coords: *list, int*
The coordinates of the next cell center in the path of the laser
**Returns**
*boolean*
True if the path should end at this point.
"""
# just care whether the next cell is off the board OR it's an opaque cell
if not pos_check(new_board, next_relevant_center_coords) or new_board[next_relevant_center_coords[0],
next_relevant_center_coords[1]] == 3:
return True
else:
return False