-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest19.pins24
182 lines (171 loc) · 4.39 KB
/
test19.pins24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Test 19 - LU decomposition (doesn't work well because of integer division)
fun main() =
let
var A = 0
var L = 0
var U = 0
in
# [ 1, 1, 1 ]
# [ 4, 3, -1 ]
# [ 3, 5, 3 ]
A = matrixCreate(1, 1, 1, 4, 3, -1, 3, 5, 3),
L = matrixCreate(0, 0, 0, 0, 0, 0, 0, 0, 0),
U = matrixCreate(0, 0, 0, 0, 0, 0, 0, 0, 0),
LU(A, L, U, 3),
# [ 1, 0, 0 ]
# [ 4, 1, 0 ]
# [ 3, -2, 1 ]
putstr("matrix L:\n\00"),
matrixPrint(L, 3),
# [ 1, 1, 1 ]
# [ 0, -1, -5 ]
# [ 0, 0, -10 ]
putstr("matrix U:\n\00"),
matrixPrint(U, 3)
end
# Fills matrices L and U
fun LU(A, L, U, n) =
let
var i = 0
var j = 0
var k = 0
var sum = 0
in
while i < n do
# U
k = i,
while k < n do
sum = 0,
j = 0,
while j < i do
sum = sum + ((L + 4 * i)^ + 4 * j)^ * ((U + 4 * j)^ + 4 * k)^,
j = j + 1
end,
((U + 4 * i)^ + 4 * k)^ = ((A + 4 * i)^ + 4 * k)^ - sum,
k = k + 1
end,
# L
k = i,
while k < n do
if i == k then
((L + 4 * i)^ + 4 * i)^ = 1
else
sum = 0,
j = 0,
while j < i do
sum = sum + ((L + 4 * k)^ + 4 * j)^ * ((U + 4 * j)^ + 4 * i)^,
j = j + 1
end,
((L + 4 * k)^ + 4 * i)^ = (((A + 4 * k)^ + 4 * i)^ - sum) / ((U + 4 * i)^ + 4 * i)^
end,
k = k + 1
end,
i = i + 1
end
end,
0
# Creates new 3x3 matrix:
# [ a11, a12, a13 ]
# [ a21, a22, a23 ]
# [ a31, a32, a33 ]
fun matrixCreate(a11, a12, a13, a21, a22, a23, a31, a32, a33) =
let
var n = 3
var M = 0
var i = 0
in
M = new(n * 4),
while i < n do
(M + 4 * i)^ = new(n * 4),
i = i + 1
end,
M^^ = a11, # M[0][0]
(M^ + 4)^ = a12, # M[0][1]
(M^ + 8)^ = a13, # M[0][2]
(M + 4)^^ = a21, # M[1][0]
((M + 4)^ + 4)^ = a22, # M[1][1]
((M + 4)^ + 8)^ = a23, # M[1][2]
(M + 8)^^ = a31, # M[2][0]
((M + 8)^ + 4)^ = a32, # M[2][1]
((M + 8)^ + 8)^ = a33, # M[2][2]
M
end
# Returns number of digits including negative sign
fun digits(n) =
let
var digits = 0
in
if n == 0 then
digits = 1
else
if n < 0 then
digits = digits + 1,
while n < 0 do
n = n / 10,
digits = digits + 1
end
else
while n > 0 do
n = n / 10,
digits = digits + 1
end
end
end,
digits
end
# Prints indent
fun indentPrint(indent) =
let
var i = 0
in
while i < indent do
putstr(" \00"),
i = i + 1
end,
0
end
# Prints square matrix n x n and formats it
fun matrixPrint(M, n) =
let
var r = 0
var i = 0
var j = 0
var maxDigits = 0
var d = 0
in
maxDigits = new(n * 4),
j = 0,
while j < n do
i = 0,
(maxDigits + 4 * j)^ = 0,
while i < n do
d = digits(((M + 4 * i)^ + 4 * j)^),
if d > (maxDigits + 4 * j)^ then
(maxDigits + 4 * j)^ = d
end,
i = i + 1
end,
#putint((maxDigits + 4 * j)^),
#putstr("\n\00"),
j = j + 1
end,
i = 0,
while i < n do
j = 0,
putstr("[ \00"),
while j < n do
indentPrint((maxDigits + 4 * j)^ - digits(((M + 4 * i)^ + 4 * j)^)),
putint(((M + 4 * i)^ + 4 * j)^),
if j < n - 1 then
putstr(", \00")
end,
j = j + 1
end,
putstr(" ]\n\00"),
i = i + 1
end,
0
end
fun putint(int)
fun putstr(straddr)
fun new(size)