-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
36 lines (32 loc) · 1.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Dependencies
import numpy as np
import keras
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.applications.vgg16 import preprocess_input
from keras.applications.vgg16 import decode_predictions
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from keras.applications.vgg16 import VGG16
import tensorflow as tf
# def predict(img_path):
def getPrediction(filename):
model = tf.keras.models.load_model("/app/final_model_weights.hdf5")
img = load_img('/app/static/'+filename, target_size=(180, 180))
img = img_to_array(img)
img = img / 255
img = np.expand_dims(img,axis=0)
predictions = model.predict(img)
category = np.argmax(predictions, axis=-1)
answer = category[0]
probability = model.predict(img)
probability_results = 0
if answer == 1:
answer = "Recycle"
probability_results = probability[0][1]
else:
answer = "Organic"
probability_results = probability[0][0]
answer = str(answer)
probability_results=str(probability_results)
values = [answer, probability_results, filename]
return values[0], values[1], values[2]