-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
56 lines (41 loc) · 1.17 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import streamlit as st
import pickle
import string
import nltk
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()
def transform_text(sms):
sms = sms.lower()
sms = nltk.word_tokenize(sms)
# This is used to remove all the special characters from the sms which are there in the Dataset
y = []
for i in sms:
if i.isalnum():
y.append(i)
sms = y[:]
y.clear()
for i in sms:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
sms = y[:]
y.clear()
for i in sms:
y.append(ps.stem(i))
return " ".join(y)
tfidf = pickle.load(open('vectorizer.pkl', 'rb'))
model = pickle.load(open('model.pkl', 'rb'))
st.title("Email/SMS Spam Classifier: By Ayush")
input_sms = st.text_area("Enter The Message")
if st.button('Predict'):
#1. Preprocessing
transformed_sms = transform_text(input_sms)
#2. Vectorize
vector_input = tfidf.transform([transformed_sms])
#3. Predict
result = model.predict(vector_input)[0]
#4. Display
if result == 1:
st.header("Spam")
else:
st.header("Not Spam")