-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDigitRecognizer.py
40 lines (29 loc) · 1.17 KB
/
DigitRecognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
mnist = tf.keras.datasets.mnist #Get the data
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train = tf.keras.utils.normalize(x_train,axis=1)
x_test = tf.keras.utils.normalize(x_test,axis=1)
#Create Neural Network
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128,activation = tf.nn.relu))
model.add(tf.keras.layers.Dense(128,activation = tf.nn.relu))
model.add(tf.keras.layers.Dense(10,activation = tf.nn.softmax))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',metrics=['accuracy'])
model.fit(x_train,y_train,epochs=3) #Train model 1 time.
#Show the RGB codes
#print(x_train[0])
#Show the loss and accuracy.
val_loss,val_acc = model.evaluate(x_test,y_test)
print(val_loss,val_acc)
model.save('epic_num_reader.model.h5')
new_model = tf.keras.models.load_model('epic_num_reader.model')
predictions = new_model.predict([x_test])
#Convert to understandable form.
print("The number is : ",np.argmax(predictions[10]))
#If you want change the test and prediction numbers
#Show the image
plt.imshow(x_test[10])
plt.show()