forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_models.py
286 lines (232 loc) · 10.7 KB
/
test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Owner(s): ["module: onnx"]
import unittest
import pytorch_test_common
from model_defs.dcgan import _netD, _netG, bsz, imgsz, nz, weights_init
from model_defs.emb_seq import EmbeddingNetwork1, EmbeddingNetwork2
from model_defs.mnist import MNIST
from model_defs.op_test import ConcatNet, DummyNet, FakeQuantNet, PermuteNet, PReluNet
from model_defs.squeezenet import SqueezeNet
from model_defs.srresnet import SRResNet
from model_defs.super_resolution import SuperResolutionNet
from pytorch_test_common import skipIfUnsupportedMinOpsetVersion, skipScriptTest
from torchvision.models import shufflenet_v2_x1_0
from torchvision.models.alexnet import alexnet
from torchvision.models.densenet import densenet121
from torchvision.models.googlenet import googlenet
from torchvision.models.inception import inception_v3
from torchvision.models.mnasnet import mnasnet1_0
from torchvision.models.mobilenet import mobilenet_v2
from torchvision.models.resnet import resnet50
from torchvision.models.segmentation import deeplabv3_resnet101, fcn_resnet101
from torchvision.models.vgg import vgg16, vgg16_bn, vgg19, vgg19_bn
from torchvision.models.video import mc3_18, r2plus1d_18, r3d_18
from verify import verify
import torch
from torch.ao import quantization
from torch.autograd import Variable
from torch.onnx import OperatorExportTypes
from torch.testing._internal import common_utils
from torch.testing._internal.common_utils import skipIfNoLapack
if torch.cuda.is_available():
def toC(x):
return x.cuda()
else:
def toC(x):
return x
BATCH_SIZE = 2
class TestModels(pytorch_test_common.ExportTestCase):
opset_version = 9 # Caffe2 doesn't support the default.
keep_initializers_as_inputs = False
def exportTest(self, model, inputs, rtol=1e-2, atol=1e-7, **kwargs):
import caffe2.python.onnx.backend as backend
with torch.onnx.select_model_mode_for_export(
model, torch.onnx.TrainingMode.EVAL
):
graph = torch.onnx.utils._trace(model, inputs, OperatorExportTypes.ONNX)
torch._C._jit_pass_lint(graph)
verify(
model,
inputs,
backend,
rtol=rtol,
atol=atol,
opset_version=self.opset_version,
)
def test_ops(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(DummyNet()), toC(x))
def test_prelu(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(PReluNet(), x)
@skipScriptTest()
def test_concat(self):
input_a = Variable(torch.randn(BATCH_SIZE, 3))
input_b = Variable(torch.randn(BATCH_SIZE, 3))
inputs = ((toC(input_a), toC(input_b)),)
self.exportTest(toC(ConcatNet()), inputs)
def test_permute(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 10, 12))
self.exportTest(PermuteNet(), x)
@skipScriptTest()
def test_embedding_sequential_1(self):
x = Variable(torch.randint(0, 10, (BATCH_SIZE, 3)))
self.exportTest(EmbeddingNetwork1(), x)
@skipScriptTest()
def test_embedding_sequential_2(self):
x = Variable(torch.randint(0, 10, (BATCH_SIZE, 3)))
self.exportTest(EmbeddingNetwork2(), x)
@unittest.skip("This model takes too much memory")
def test_srresnet(self):
x = Variable(torch.randn(1, 3, 224, 224).fill_(1.0))
self.exportTest(
toC(SRResNet(rescale_factor=4, n_filters=64, n_blocks=8)), toC(x)
)
@skipIfNoLapack
def test_super_resolution(self):
x = Variable(torch.randn(BATCH_SIZE, 1, 224, 224).fill_(1.0))
self.exportTest(toC(SuperResolutionNet(upscale_factor=3)), toC(x), atol=1e-6)
def test_alexnet(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(alexnet()), toC(x))
def test_mnist(self):
x = Variable(torch.randn(BATCH_SIZE, 1, 28, 28).fill_(1.0))
self.exportTest(toC(MNIST()), toC(x))
@unittest.skip("This model takes too much memory")
def test_vgg16(self):
# VGG 16-layer model (configuration "D")
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(vgg16()), toC(x))
@unittest.skip("This model takes too much memory")
def test_vgg16_bn(self):
# VGG 16-layer model (configuration "D") with batch normalization
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(vgg16_bn()), toC(x))
@unittest.skip("This model takes too much memory")
def test_vgg19(self):
# VGG 19-layer model (configuration "E")
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(vgg19()), toC(x))
@unittest.skip("This model takes too much memory")
def test_vgg19_bn(self):
# VGG 19-layer model (configuration "E") with batch normalization
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(vgg19_bn()), toC(x))
def test_resnet(self):
# ResNet50 model
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(resnet50()), toC(x), atol=1e-6)
# This test is numerically unstable. Sporadic single element mismatch occurs occasionally.
def test_inception(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 299, 299))
self.exportTest(toC(inception_v3()), toC(x), acceptable_error_percentage=0.01)
def test_squeezenet(self):
# SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
# <0.5MB model size
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
sqnet_v1_0 = SqueezeNet(version=1.1)
self.exportTest(toC(sqnet_v1_0), toC(x))
# SqueezeNet 1.1 has 2.4x less computation and slightly fewer params
# than SqueezeNet 1.0, without sacrificing accuracy.
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
sqnet_v1_1 = SqueezeNet(version=1.1)
self.exportTest(toC(sqnet_v1_1), toC(x))
def test_densenet(self):
# Densenet-121 model
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(densenet121()), toC(x), rtol=1e-2, atol=1e-5)
@skipScriptTest()
def test_dcgan_netD(self):
netD = _netD(1)
netD.apply(weights_init)
input = Variable(torch.empty(bsz, 3, imgsz, imgsz).normal_(0, 1))
self.exportTest(toC(netD), toC(input))
@skipScriptTest()
def test_dcgan_netG(self):
netG = _netG(1)
netG.apply(weights_init)
input = Variable(torch.empty(bsz, nz, 1, 1).normal_(0, 1))
self.exportTest(toC(netG), toC(input))
@skipIfUnsupportedMinOpsetVersion(10)
def test_fake_quant(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(FakeQuantNet()), toC(x))
@skipIfUnsupportedMinOpsetVersion(10)
def test_qat_resnet_pertensor(self):
# Quantize ResNet50 model
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
qat_resnet50 = resnet50()
# Use per tensor for weight. Per channel support will come with opset 13
qat_resnet50.qconfig = quantization.QConfig(
activation=quantization.default_fake_quant,
weight=quantization.default_fake_quant,
)
quantization.prepare_qat(qat_resnet50, inplace=True)
qat_resnet50.apply(torch.ao.quantization.enable_observer)
qat_resnet50.apply(torch.ao.quantization.enable_fake_quant)
_ = qat_resnet50(x)
for module in qat_resnet50.modules():
if isinstance(module, quantization.FakeQuantize):
module.calculate_qparams()
qat_resnet50.apply(torch.ao.quantization.disable_observer)
self.exportTest(toC(qat_resnet50), toC(x))
@skipIfUnsupportedMinOpsetVersion(13)
def test_qat_resnet_per_channel(self):
# Quantize ResNet50 model
x = torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)
qat_resnet50 = resnet50()
qat_resnet50.qconfig = quantization.QConfig(
activation=quantization.default_fake_quant,
weight=quantization.default_per_channel_weight_fake_quant,
)
quantization.prepare_qat(qat_resnet50, inplace=True)
qat_resnet50.apply(torch.ao.quantization.enable_observer)
qat_resnet50.apply(torch.ao.quantization.enable_fake_quant)
_ = qat_resnet50(x)
for module in qat_resnet50.modules():
if isinstance(module, quantization.FakeQuantize):
module.calculate_qparams()
qat_resnet50.apply(torch.ao.quantization.disable_observer)
self.exportTest(toC(qat_resnet50), toC(x))
@skipScriptTest(skip_before_opset_version=15, reason="None type in outputs")
def test_googlenet(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(googlenet()), toC(x), rtol=1e-3, atol=1e-5)
def test_mnasnet(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(mnasnet1_0()), toC(x), rtol=1e-3, atol=1e-5)
def test_mobilenet(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(mobilenet_v2()), toC(x), rtol=1e-3, atol=1e-5)
@skipScriptTest() # prim_data
def test_shufflenet(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(shufflenet_v2_x1_0()), toC(x), rtol=1e-3, atol=1e-5)
@skipIfUnsupportedMinOpsetVersion(11)
def test_fcn(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(
toC(fcn_resnet101(weights=None, weights_backbone=None)),
toC(x),
rtol=1e-3,
atol=1e-5,
)
@skipIfUnsupportedMinOpsetVersion(11)
def test_deeplab(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(
toC(deeplabv3_resnet101(weights=None, weights_backbone=None)),
toC(x),
rtol=1e-3,
atol=1e-5,
)
def test_r3d_18_video(self):
x = Variable(torch.randn(1, 3, 4, 112, 112).fill_(1.0))
self.exportTest(toC(r3d_18()), toC(x), rtol=1e-3, atol=1e-5)
def test_mc3_18_video(self):
x = Variable(torch.randn(1, 3, 4, 112, 112).fill_(1.0))
self.exportTest(toC(mc3_18()), toC(x), rtol=1e-3, atol=1e-5)
def test_r2plus1d_18_video(self):
x = Variable(torch.randn(1, 3, 4, 112, 112).fill_(1.0))
self.exportTest(toC(r2plus1d_18()), toC(x), rtol=1e-3, atol=1e-5)
if __name__ == "__main__":
common_utils.run_tests()