-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathassume_prove.py
321 lines (250 loc) · 12.7 KB
/
assume_prove.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from typing import Mapping, NamedTuple, NewType, Sequence, Set, TypeAlias, cast, overload
from typing_extensions import assert_never
import dsa
import nip
import source
VarName = NewType('VarName', str)
NodeOkName = NewType('NodeOkName', VarName)
APVar: TypeAlias = source.ExprVarT[VarName]
class InstructionAssume(NamedTuple):
expr: source.ExprT[VarName]
origin: source.NodeName # where did this originate from?
class InstructionProve(NamedTuple):
expr: source.ExprT[VarName]
origin: source.NodeName
Instruction = InstructionAssume | InstructionProve
Script = Sequence[InstructionAssume | InstructionProve]
class AssumeProveProg(NamedTuple):
nodes_script: Mapping[NodeOkName, Script]
entry: NodeOkName
arguments: Sequence[APVar]
variables: Set[source.ExprVarT[VarName]]
# TODO: specify each assert with a specific error message
def node_ok_name(n: source.NodeName) -> NodeOkName:
return NodeOkName(VarName(f'node_{n}_ok'))
def node_ok_ap_var(n: source.NodeName) -> APVar:
return source.ExprVar(source.type_bool, VarName(node_ok_name(n)))
def convert_dsa_var_to_ap_var(var: dsa.Incarnation[source.ProgVarName | nip.GuardVarName]) -> VarName:
return VarName(f'{var.base}~{var.inc}')
def convert_expr_var(expr: source.ExprVarT[dsa.Incarnation[source.ProgVarName | nip.GuardVarName]]) -> APVar:
return source.ExprVar(expr.typ, name=convert_dsa_var_to_ap_var(expr.name))
# TODO: make sure mypy enforces this?
# TODO: rename to dsa_var_to_ap
@overload
def convert_expr_dsa_vars_to_ap(expr: source.ExprVarT[dsa.Incarnation[source.ProgVarName | nip.GuardVarName]]) -> source.ExprVarT[VarName]:
...
@overload
def convert_expr_dsa_vars_to_ap(expr: source.ExprT[dsa.Incarnation[source.ProgVarName | nip.GuardVarName]]) -> source.ExprT[VarName]:
...
def convert_expr_dsa_vars_to_ap(expr: source.ExprT[dsa.Incarnation[source.ProgVarName | nip.GuardVarName]]) -> source.ExprT[VarName]:
if isinstance(expr, source.ExprNum):
return expr
elif isinstance(expr, source.ExprVar):
return convert_expr_var(expr)
elif isinstance(expr, source.ExprOp):
return source.ExprOp(expr.typ, source.Operator(expr.operator), operands=tuple(
convert_expr_dsa_vars_to_ap(operand) for operand in expr.operands
))
elif isinstance(expr, source.ExprType | source.ExprSymbol):
return expr
elif isinstance(expr, source.ExprFunction):
return source.ExprFunction(expr.typ, expr.function_name, [convert_expr_dsa_vars_to_ap(arg) for arg in expr.arguments], )
assert_never(expr)
def make_assume(var: dsa.Var[source.ProgVarName | nip.GuardVarName], expr: source.ExprT[dsa.Incarnation[source.ProgVarName | nip.GuardVarName]], origin: source.NodeName) -> Instruction:
""" Helper function to make things as readable as possible, we really don't want to get this wrong
"""
lhs = source.ExprVar(var.typ, convert_dsa_var_to_ap_var(var.name))
rhs = convert_expr_dsa_vars_to_ap(expr)
eq = source.ExprOp(source.type_bool, source.Operator.EQUALS, (lhs, rhs))
return InstructionAssume(eq, origin)
# TODO: rename to base var to ap var
def prog_var_to_ap_var(v: source.ExprVarT[source.ProgVarName | nip.GuardVarName]) -> APVar:
return source.ExprVar(v.typ, VarName(v.name))
def get_loop_count_target_var(loop: source.Loop[dsa.Incarnation[source.ProgVarName | nip.GuardVarName]]) -> source.ExprVarT[dsa.Incarnation[source.ProgVarName]]:
for target in loop.targets:
if target.name.base.startswith('loop#') and target.name.base.endswith('#count'):
assert isinstance(target.name.base, source.ProgVarName)
# mypy isn't smart enough to not need this cast
return cast(source.ExprVarT[dsa.Incarnation[source.ProgVarName]], target)
assert False, "loop doesn't have a loop a counter automatically inserted by the c parser"
# def apply_incarnation_for_node(func: dsa.Function, n: source.NodeName, prog_var: source.ExprVarT[source.ProgVarName | nip.GuardVarName]) -> APVar:
# if a variable isn't defined at that node, we use an arbitrary value
#
# THIS IS A POTENTIAL SOURCE OF UNSOUDNESS
#
# use case
# int a;
# for (int i = 0; i < 10; i++)
# // loop invariant: i >= 3 ==> a = 1
# // 0 <= i <= 5
# {
# if (i == 2)
# {
# a = 1;
# }
# if (i == 5)
# {
# return a + 1;
# }
# }
# return 0;
#
# We have to prove the loop invariant holds on entry. However, there is no
# available incarnation for 'a' on the node which jumps to the loop
# header, yet the invariant depends on it. So we make a fresh variable
# for it.
#
# Argument for correctness: if the loop invariant holds for an arbitrary value
# of a, then it will hold for all concrete values during execution.
# if prog_var not in func.contexts[n]:
# return source.ExprVar(prog_var.typ, VarName(f'{prog_var.name}_arbitrary#node{n}'))
# return convert_expr_var(dsa.make_dsa_var(prog_var, func.contexts[n][prog_var]))
def make_assume_prove_script_for_node(func: dsa.Function, n: source.NodeName) -> Script:
node = func.nodes[n]
script: list[Instruction] = []
if isinstance(node, source.NodeCond):
# CondNode(expr, succ_then, succ_else)
# prove expr --> succ_then_ok
# prove not expr --> succ_else_ok
cond = convert_expr_dsa_vars_to_ap(node.expr)
if (n, node.succ_then) not in func.cfg.back_edges:
script.append(InstructionProve(source.expr_implies(
cond, node_ok_ap_var(node.succ_then)), n))
if (n, node.succ_else) not in func.cfg.back_edges:
script.append(InstructionProve(source.expr_implies(
source.expr_negate(cond), node_ok_ap_var(node.succ_else)), n))
elif isinstance(node, source.NodeBasic):
# BasicNode(upds, succ)
# assume upd[i].lhs = upd[i].rhs forall i
# prove succ_ok
for upd in node.upds:
script.append(make_assume(upd.var, upd.expr, n))
# proves successors are correct, ignoring back edges
if (n, node.succ) not in func.cfg.back_edges:
script.append(InstructionProve(node_ok_ap_var(node.succ), n))
elif isinstance(node, source.NodeCall):
# CallNode(func, args, rets, succ):
# prove func.pre(args)
# assume func.post(args, rets)
# prove succ_ok
# TODO: pre and post condition
# proves successors are correct, ignoring back edges
if (n, node.succ) not in func.cfg.back_edges:
script.append(InstructionProve(node_ok_ap_var(node.succ), n))
elif isinstance(node, source.NodeEmpty):
# proves successors are correct, ignoring back edges
if (n, node.succ) not in func.cfg.back_edges:
script.append(InstructionProve(node_ok_ap_var(node.succ), n))
elif isinstance(node, source.NodeAssume):
script.append(InstructionAssume(
convert_expr_dsa_vars_to_ap(node.expr), n))
# proves successors are correct, ignoring back edges
if (n, node.succ) not in func.cfg.back_edges:
script.append(InstructionProve(node_ok_ap_var(node.succ), n))
elif isinstance(node, source.NodeAssert):
script.append(InstructionProve(
convert_expr_dsa_vars_to_ap(node.expr), n))
if (n, node.succ) not in func.cfg.back_edges:
script.append(InstructionProve(node_ok_ap_var(node.succ), n))
else:
assert_never(node)
return script
def condition_to_take_path(func: dsa.Function, path: source.Path) -> source.ExprT[dsa.Incarnation[source.ProgVarName | nip.GuardVarName]]:
assert False, "TODO: remove dead code"
cond: source.ExprT[dsa.Incarnation[source.ProgVarName |
nip.GuardVarName]] = source.expr_true
for i in range(len(path)):
node = func.nodes[path[i]]
if isinstance(node, source.NodeCond):
# if the last node of the path is a conditional node, then the
# node's condition doesn't add any condition to the path
if not i + 1 < len(path):
continue
next_on_path = path[i+1]
if node.succ_then == next_on_path:
cond = source.expr_and(cond, node.expr)
elif node.succ_else == next_on_path:
cond = source.expr_and(cond, source.expr_negate(node.expr))
else:
assert False, "conditional node not jumping to following node"
elif not isinstance(node, source.NodeBasic | source.NodeEmpty | source.NodeCall):
assert_never(node)
return cond
def make_prog(func: dsa.Function) -> AssumeProveProg:
# don't need to keep DSA artifcats because we don't have pre conditions,
# post conditions or loop invariants
# NOTE: lots of room to eliminate SMT variable here
# a lot of blocks are just 'prove succ'
nodes_script: dict[NodeOkName, Script] = {
node_ok_name(source.NodeNameErr): [InstructionProve(source.ExprOp(source.type_bool, source.Operator.FALSE, ()), source.NodeNameRet)],
# we don't have a post condition yet
node_ok_name(source.NodeNameRet): [InstructionProve(source.ExprOp(source.type_bool, source.Operator.TRUE, ()), source.NodeNameErr)],
}
# traverse topologically to make the pretty printer nicer to read
for n in func.traverse_topologically():
if n in (source.NodeNameErr, source.NodeNameRet):
continue
nodes_script[node_ok_name(
n)] = make_assume_prove_script_for_node(func, n)
for script in nodes_script.values():
assert all(ins.expr.typ == source.type_bool for ins in script)
args = tuple(convert_expr_var(arg) for arg in func.signature.parameters)
ap_variables = set([convert_expr_var(v) for v in func.variables])
return AssumeProveProg(nodes_script=nodes_script, entry=node_ok_name(func.cfg.entry), arguments=args, variables=ap_variables)
def pretty_instruction_ascii(ins: Instruction) -> str:
if isinstance(ins, InstructionAssume):
return f"assume {source.pretty_expr_ascii(ins.expr)}"
elif isinstance(ins, InstructionProve):
return f"prove {source.pretty_expr_ascii(ins.expr)}"
assert_never(ins)
def pretty_print_prog(prog: AssumeProveProg) -> None:
m = max(*(len(var.name) for script in prog.nodes_script.values()
for ins in script for var in source.all_vars_in_expr(ins.expr)))
m = max(m, len('X_ok'))
print("Entry node:", prog.entry)
print(f'{"X_ok".ljust(m)}: {source.pretty_type_ascii(source.type_bool)}')
seen_vars: set[VarName] = set()
for script in prog.nodes_script.values():
for ins in script:
for var in source.all_vars_in_expr(ins.expr):
if var.name not in seen_vars:
print(
f'{var.name.ljust(m)}: {source.pretty_type_ascii(var.typ)}')
seen_vars.add(var.name)
m = max(*(len(str(n)) for n in prog.nodes_script)) + 2
for n in prog.nodes_script:
print(f'{n}: '.ljust(m), end='')
prefix = ' ' * m
for i, instruction in enumerate(prog.nodes_script[n]):
if i > 0:
print(prefix, end='')
print(pretty_instruction_ascii(instruction))
# print(prefix + '=>',
# source.pretty_expr_ascii(apply_weakest_precondition(prog.nodes_script[n])))
def apply_weakest_precondition(script: Script) -> source.ExprT[VarName]:
# A: wp(prove P, Q) = P && Q
# B: wp(assume P, Q) = P --> Q
# C: wp(S;T, Q) = wp(S, wp(T, Q))
# there are only a few instruction per script (about <= 5)
# so, we use recursion + copy because the performance won't matter
# but the correctness is much clearer that way
def wp_single(ins: Instruction, post: source.ExprT[VarName]) -> source.ExprT[VarName]:
if isinstance(ins, InstructionProve):
if post == source.expr_true:
return ins.expr
return source.expr_and(ins.expr, post)
elif isinstance(ins, InstructionAssume):
if post == source.expr_true:
# a -> true is a tautology
return source.expr_true
return source.expr_implies(ins.expr, post)
assert_never(ins)
def wp(script: Script, post: source.ExprT[VarName]) -> source.ExprT[VarName]:
if len(script) == 0:
return post
if len(script) == 1:
return wp_single(script[0], post)
# from C you can show `wp(S;T;R, Q) = wp(S, wp(T;R, Q)`
# (; is associative, put the brackets are T;R)
return wp([script[0]], wp(script[1:], post))
return wp(script, source.expr_true)