-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathgeneralized_path.py
executable file
·318 lines (241 loc) · 12.2 KB
/
generalized_path.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 6 00:34:33 2020
@author: akshat
"""
import time
import rdkit
import pickle
import itertools
from rdkit import Chem
from rdkit.Chem import MolFromSmiles as smi2mol
from rdkit.Chem import MolToSmiles as mol2smi
from rdkit.Chem import AllChem
from rdkit.DataStructs.cDataStructs import TanimotoSimilarity
from rdkit.Chem import rdMolDescriptors
from selfies import decoder
import numpy as np
from selfies import encoder
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.*')
import warnings
warnings.simplefilter('ignore', np.RankWarning)
def get_ECFP4(mol):
''' Return rdkit ECFP4 fingerprint object for mol
Parameters:
mol (rdkit.Chem.rdchem.Mol) : RdKit mol object
Returns:
rdkit ECFP4 fingerprint object for mol
'''
return AllChem.GetMorganFingerprint(mol, 2)
def get_selfie_chars(selfie):
'''Obtain a list of all selfie characters in string selfie
Parameters:
selfie (string) : A selfie string - representing a molecule
Example:
>>> get_selfie_chars('[C][=C][C][=C][C][=C][Ring1][Branch1_1]')
['[C]', '[=C]', '[C]', '[=C]', '[C]', '[=C]', '[Ring1]', '[Branch1_1]']
Returns:
chars_selfie: list of selfie characters present in molecule selfie
'''
chars_selfie = [] # A list of all SELFIE sybols from string selfie
while selfie != '':
chars_selfie.append(selfie[selfie.find('['): selfie.find(']')+1])
selfie = selfie[selfie.find(']')+1:]
return chars_selfie
def randomize_smiles(mol):
'''Returns a random (dearomatized) SMILES given an rdkit mol object of a molecule.
Parameters:
mol (rdkit.Chem.rdchem.Mol) : RdKit mol object (None if invalid smile string smi)
Returns:
mol (rdkit.Chem.rdchem.Mol) : RdKit mol object (None if invalid smile string smi)
'''
if not mol:
return None
Chem.Kekulize(mol)
return rdkit.Chem.MolToSmiles(mol, canonical=False, doRandom=True, isomericSmiles=False, kekuleSmiles=True)
def sanitize_smiles(smi):
'''Return a canonical smile representation of smi
Parameters:
smi (string) : smile string to be canonicalized
Returns:
mol (rdkit.Chem.rdchem.Mol) : RdKit mol object (None if invalid smile string smi)
smi_canon (string) : Canonicalized smile representation of smi (None if invalid smile string smi)
conversion_successful (bool): True/False to indicate if conversion was successful
'''
try:
mol = smi2mol(smi, sanitize=True)
smi_canon = mol2smi(mol, isomericSmiles=False, canonical=True)
return (mol, smi_canon, True)
except:
return (None, None, False)
def get_random_smiles(smi, num_random_samples):
''' Obtain 'num_random_samples' non-unique SMILES orderings of smi
Parameters:
smi (string) : Input SMILES string (needs to be a valid molecule)
num_random_samples (int): Number fo unique different SMILES orderings to form
Returns:
randomized_smile_orderings (list) : list of SMILES strings
'''
mol = Chem.MolFromSmiles(smi)
if mol == None:
raise Exception('Invalid starting structure encountered')
randomized_smile_orderings = [randomize_smiles(mol) for _ in range(num_random_samples)]
randomized_smile_orderings = list(set(randomized_smile_orderings)) # Only consider unique SMILE strings
return randomized_smile_orderings
def get_fp_scores(smiles_back, target_smi):
'''Calculate the Tanimoto fingerprint (ECFP4 fingerint) similarity between a list
of SMILES and a known target structure (target_smi).
Parameters:
smiles_back (list) : A list of valid SMILES strings
target_smi (string) : A valid SMILES string. Each smile in 'smiles_back' will be compared to this stucture
Returns:
smiles_back_scores (list of floats) : List of fingerprint similarities
'''
smiles_back_scores = []
target = Chem.MolFromSmiles(target_smi)
fp_target = get_ECFP4(target)
for item in smiles_back:
try:
mol = Chem.MolFromSmiles(item)
except:
print('Invalid smile: ', item)
fp_mol = get_ECFP4(mol)
score = TanimotoSimilarity(fp_mol, fp_target)
smiles_back_scores.append(score)
return smiles_back_scores
def get_joint_sim(smi_list, triplet):
'''Calculate the joint similarity of each SMILES (within smi_list) to a list of three molecules (triplets)
(Based on Equation 1 of the paper, see Section D :) )
Parameters:
smi_list (list) : A list of SMILES stings
triplet (list) : List of three SMILES strings
Returns:
sim_score (list of floats) : List of joint similarity scores
'''
scores_t1 = get_fp_scores(smi_list, triplet[0]) # similarity to triplet 1
scores_t2 = get_fp_scores(smi_list, triplet[1]) # similarity to triplet 2
scores_t3 = get_fp_scores(smi_list, triplet[2]) # similarity to triplet 3
z = np.polyfit([-2/3, 0.0, 1.0], [-1.0 , 0.0, 1.0], 3) # Pollynomial coefficients for Equation 1
data = np.array([scores_t1, scores_t2, scores_t3])
sim_score = np.average(data, axis=0) - (np.max(data, axis=0) - np.min(data, axis=0))
sim_score = (z[0]*(sim_score**3)) + (z[1]*(sim_score**2)) + (z[2]*(sim_score))
return sim_score
def form_joint_path(starting_selfie_chars, struct_2_selfie_chars, struct_3_selfie_chars, triplet):
''' Create a generalized chemical path starting from the molecule 'starting_selfie_chars' (provided as a list of chars)
to 'struct_2_selfie_chars' & 'struct_2_selfie_chars'
Parameters:
starting_selfie_chars (list) : A list of characters in a single SELFIES string
struct_2_selfie_chars (list) : A list of characters in a single SELFIES string
struct_3_selfie_chars (list) : A list of characters in a single SELFIES string
triplet (list) : A list 3 SMILES strings
Returns:
path (list of SMILES string) : List of SMILES strings in a generalized path
joint_sim_scores (list of floats) : List of joint similarity score for each SMILES string in path.
'''
best_median = starting_selfie_chars.copy()
best_score = -10**6
indices_diff_1 = [i for i in range(len(starting_selfie_chars)) if starting_selfie_chars[i] != struct_2_selfie_chars[i]]
indices_diff_2 = [i for i in range(len(starting_selfie_chars)) if starting_selfie_chars[i] != struct_3_selfie_chars[i]]
path, joint_sim_scores = [], []
while len(indices_diff_1) > 0 or len(indices_diff_2) > 0:
# Mutation between 'starting_selfie_chars' & 'struct_2_selfie_chars'
try:
idx_1 = np.random.choice(indices_diff_1, 1)[0] # Index to be operated on
indices_diff_1.remove(idx_1) # Remove that index
median_1_sf = best_median.copy()
median_1_sf[idx_1] = struct_2_selfie_chars[idx_1]
median_1 = decoder(''.join(x for x in median_1_sf).strip())
median_1_score = get_joint_sim([median_1], triplet)
except:
median_1_score = [-10**7]
# Mutation between 'starting_selfie_chars' & 'struct_3_selfie_chars'
try:
idx_2 = np.random.choice(indices_diff_2, 1)[0] # Index to be operated on
indices_diff_2.remove(idx_2) # Remove that index
median_2_sf = best_median.copy()
median_2_sf[idx_2] = struct_3_selfie_chars[idx_2]
median_2 = decoder(''.join(x for x in median_2_sf).strip())
median_2_score = get_joint_sim([median_2], triplet)
except:
median_2_score = [-10**7]
if max([median_1_score[0], median_2_score[0]]) > best_score:
if median_1_score > median_2_score:
best_median = median_1_sf.copy()
indices_diff_2.append(idx_2)
path.append(median_1)
joint_sim_scores.append(median_1_score)
# print('{} Score: {}'.format(median_1, median_1_score))
else:
best_median = median_2_sf.copy()
indices_diff_1.append(idx_1)
path.append(median_2)
joint_sim_scores.append(median_2_score)
# print('{} Score: {}'.format(median_2, median_2_score))
best_score = max([median_1_score[0], median_2_score[0]])
return path, joint_sim_scores
# Load in the HCE triplets:
with open("./data/triplets.pickle", "rb") as fp: # Unpickling
triplets_all = pickle.load(fp)
collect_unfilt = {}
collect_filt = {}
num_paths = 10000 # Explore 10k paths:
for trip_id, triplet in enumerate(triplets_all):
print('On triplet: ', trip_id)
ALL_PATHS = []
ALL_SIM = []
start_time = time.time()
for iter_ in range(num_paths):
if iter_ % 10 == 0:
print(' Obtaining path {}/{}: '.format(iter_, num_paths))
# Randomize the ordering of the smiles inside the triplet:
triplet = (get_random_smiles(triplet[0], num_random_samples=1)[0], get_random_smiles(triplet[1], num_random_samples=1)[0], get_random_smiles(triplet[2], num_random_samples=1)[0])
random_choice = np.random.choice([i for i in range(len(triplet))], 3, replace=False)
starting_structure = encoder(triplet[random_choice[0]])
struct_2 = encoder(triplet[random_choice[1]])
struct_3 = encoder(triplet[random_choice[2]])
starting_selfie_chars = get_selfie_chars(starting_structure)
struct_2_selfie_chars = get_selfie_chars(struct_2)
struct_3_selfie_chars = get_selfie_chars(struct_3)
max_len = max([len(starting_selfie_chars), len(struct_2_selfie_chars), len(struct_3_selfie_chars)])
# Make everything the same length:
if len(starting_selfie_chars) < max_len:
for _ in range(max_len-len(starting_selfie_chars)): starting_selfie_chars.append(' ')
if len(struct_2_selfie_chars) < max_len:
for _ in range(max_len-len(struct_2_selfie_chars)): struct_2_selfie_chars.append(' ')
if len(struct_3_selfie_chars) < max_len:
for _ in range(max_len-len(struct_3_selfie_chars)): struct_3_selfie_chars.append(' ')
path, joint_sim_scores = form_joint_path(starting_selfie_chars.copy(), struct_2_selfie_chars.copy(), struct_3_selfie_chars.copy(), triplet)
ALL_PATHS.append(path)
ALL_SIM.append(joint_sim_scores)
ALL_SIM = list(itertools.chain.from_iterable(ALL_SIM))
ALL_SIM = [x[0] for x in ALL_SIM]
top_idx = np.argsort(ALL_SIM)[-100: ]
A = [ALL_SIM[i] for i in top_idx]
# Print statistics for the UNfiltered medians:
print('Max: {} Min: {} Mean: {} Std: {}'.format(max(A), min(A), np.mean(A), np.std(A)))
# pick the best filtered
ALL_PATHS = list(itertools.chain.from_iterable(ALL_PATHS))
collect_unfilt[trip_id] = [ALL_PATHS, ALL_SIM]
better_smi = []
for k,smi in enumerate(ALL_PATHS):
mol = Chem.MolFromSmiles(smi)
if rdMolDescriptors.CalcNumBridgeheadAtoms(mol)==0 and rdMolDescriptors.CalcNumSpiroAtoms(mol)==0:
# better_smi.append(get_best_taut(mol))
mol, smi_canon, _ = sanitize_smiles(smi)
better_smi.append((smi_canon, k))
filtered_smiles = [x[0] for x in better_smi]
filtered_scores = [ALL_SIM[x[1]] for x in better_smi]
collect_filt[trip_id] = [filtered_smiles, filtered_scores]
top_idx_filt = np.argsort(filtered_scores)[-100: ]
A = [filtered_scores[i] for i in top_idx_filt]
top_filt_smi = [filtered_smiles[i] for i in top_idx_filt]
# Print statistics for the filtered medians:
print('Time: ', time.time()-start_time)
print('Max: {} Min: {} Mean: {} Std: {}'.format(max(A), min(A), np.mean(A), np.std(A)))
# Saving the results:
with open("./BEST_MEDN/medn_4.pickle", "wb") as fp: #Pickling
pickle.dump(collect_unfilt, fp)
with open("./BEST_MEDN/medn_filt_4.pickle", "wb") as fp: #Pickling
pickle.dump(collect_filt, fp)