forked from trynthink/scout
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmseg_test.py
1174 lines (1085 loc) · 57.9 KB
/
mseg_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
""" Tests for processing microsegment data """
# Import code to be tested
import mseg as rm
# Import needed packages
import unittest
import re
import numpy as np
import os
import itertools
# Skip this test if the EIA files are not expected, indicated by the
# EXPECT_EIA_FILES environment variable being set to the string 'true'
@unittest.skipUnless('EXPECT_EIA_FILES' in os.environ and
os.environ['EXPECT_EIA_FILES'] == 'true',
'EIA Data Files Not Available On This System')
# Skip this test if running on Travis-CI and print the given skip statement
@unittest.skipIf("TRAVIS" in os.environ and os.environ["TRAVIS"] == "true",
'External File Dependency Unavailable on Travis-CI')
class ResidentialDataIntegrityTest(unittest.TestCase):
""" Tests the imported residential equipment energy use data from
EIA to confirm that the data are in the expected order and that the
consumption and equipment stock data have the required names """
def setUp(self):
# Open the EIA data file for use by all tests
f = open(rm.EIAData().res_energy, 'r')
# Read in header line
self.header = f.readline()
f.close() # Close data file
# The function that parses and assigns the data from the EIA data
# to the JSON file expects housing stock data with specific
# header; test for the presence of that header
def test_for_presence_of_housing_stock_column(self):
chk_eqstock = re.search('HOUSEHOLDS', self.header, re.IGNORECASE)
self.assertTrue(chk_eqstock, msg='In a case-insensitive' +
'search, the HOUSEHOLDS column header was not' +
'found in the EIA data file.')
# The function that parses and assigns the data from the EIA data
# to the JSON file expects consumption data with specific header;
# test for the presence of that header
def test_for_presence_of_consumption_column(self):
chk_consumption = re.search('CONSUMPTION', self.header, re.IGNORECASE)
self.assertTrue(chk_consumption, msg='In a case-insensitive' +
'search, the CONSUMPTION column header was not' +
'found in the EIA data file.')
# The function that parses and assigns the data from the EIA data
# to the JSON file expects equipment stock data with specific
# header; test for the presence of that header
def test_for_presence_of_equipment_stock_column(self):
chk_eqstock = re.search('EQSTOCK', self.header, re.IGNORECASE)
self.assertTrue(chk_eqstock, msg='In a case-insensitive' +
'search, the EQSTOCK column header was not' +
'found in the EIA data file.')
# The function that parses and assigns the data from the EIA data
# to the JSON file expects bulb type data with specific
# header; test for the presence of that header
def test_for_presence_of_bulb_type_column(self):
chk_eqstock = re.search('BULBTYPE', self.header, re.IGNORECASE)
self.assertTrue(chk_eqstock, msg='In a case-insensitive' +
'search, the BULBTYPE column header was not' +
'found in the EIA data file.')
# Test for the order of the headers in the EIA data file
def test_order_of_columns_in_header_line(self):
# Define a regex for the expected order of the columns of data
# (formatting of regex takes advantage of string concatenation
# inside parentheses)
expectregex = (r'\w*[EU]\w*[,\s]+'
r'\w*[CD]\w*[,\s]+'
r'\w*[BG]\w*[,\s]+'
r'\w*[FL]\w*[,\s]+'
r'\w*[EQ]\w*[,\s]+'
r'\w*[YR]\w*[,\s]+'
r'\w*[ST]\w*[,\s]+'
r'\w*[CNS]\w*[,\s]+'
r'\w*[HS]\w*[,\s]+'
r'\w*[BL]\w*')
# Check for a match between the defined regex and the header line
match = re.search(expectregex, self.header, re.IGNORECASE)
# If there is no match, print the header line
if not match:
print("Header Line: " + self.header)
# Run assertTrue to check for match and complete unit test
self.assertTrue(match, msg="Column headers in the EIA data file" +
"are different than expected")
class JSONTranslatorTest(unittest.TestCase):
""" Test conversion of lists of strings from JSON file into
restructured lists corresponding to the codes used by EIA in the
residential microsegment text file """
# Define example filters for each of the data cases present in
# the JSON (and handled by the json_translator function)
ok_filters = [['pacific', 'multi family home', 'natural gas',
'heating', 'demand', 'ground'],
['new england', 'mobile home', 'electricity',
'cooling', 'demand', 'people gain'],
['mid atlantic', 'single family home', 'electricity',
'cooling', 'supply', 'room AC'],
['west south central', 'mobile home', 'electricity',
'TVs', 'set top box'],
['east north central', 'mobile home', 'electricity',
'lighting', 'general service (LED)'],
['west north central', 'mobile home', 'other fuel',
'heating', 'supply', 'resistance'],
['south atlantic', 'multi family home', 'distillate',
'secondary heating', 'demand', 'windows solar'],
['new england', 'single family home', 'other fuel',
'secondary heating', 'supply', 'secondary heater (coal)'],
['new england', 'single family home', 'natural gas',
'water heating'],
['new england', 'single family home',
'total square footage'],
['new england', 'single family home', 'other fuel',
'secondary heating', 'secondary heater (kerosene)',
'demand', 'windows conduction'],
['new england', 'single family home', 'new homes'],
['new england', 'single family home', 'total homes'],
['west south central', 'mobile home', 'electricity',
'TVs', 'TV']]
# Define nonsense filter examples (combinations of building types,
# end uses, etc. that are not possible and thus wouldn't appear in
# the microsegments JSON)
nonsense_filters = [['west north central', 'mobile home', 'natural gas',
'lighting', 'room AC'],
['new england', 'single family home',
'electricity (on site)', 'cooling', 'supply',
'room AC'],
['new england', 'single family home',
'electricity', 'refrigeration',
'linear fluorescent (T-8)'],
['new england', 'single family home', 'natural gas',
'water heating', 'general service (incandescent)']
]
# Define example filters that do not have information in the
# correct order to be prepared using json_translator and should
# raise an error or exception
fail_filters = [['west north central', 'cooking', 'natural gas',
'drying'],
['pacific', 'multi family home', 'electricity',
'computers', 'video game consoles'],
['the moon', 'mobile home', 'distillate',
'heating', 'supply', 'boiler (distillate)'],
['mountain', 'multi family home', 'natural gas',
'resistance'],
['mid atlantic', 'mobile home', 'distillate',
'TVs', 'monitors'],
['mid atlantic', 'mobile home', 'electricity',
'TVs', 'antennas'],
['west north central', 'mobile home',
'electricity', 'cooling', 'supply',
'windows solar'],
['west north central', 'mobile home',
'heating', 'electricity', 'demand', 'room AC'],
['mountain', 'mobile home', 'sq ft'],
['west north central', 'mobile home',
'total square footage',
'water heating', 'room AC'],
['new england', 'single family home', 'other fuel',
'secondary heating', 'supply',
'windows conduction'],
['new england', 'single family home', 'other fuel',
'secondary heating', 'demand',
'secondary heater (coal)'],
['west north central', 'mobile home', 'new homes',
'water heating', 'room AC'],
['west north central', 'mobile home', 'total homes',
'water heating', 'room AC']
]
# Define what json_translator should produce for the given filters;
# this part is critically important, as these tuples and/or lists
# will be used by later functions to extract data from the imported
# data files
ok_out = [[['HT', 9, 2, 'GS'], 'GRND'],
[['CL', 1, 3, 'EL'], 'PEOPLE'],
[['CL', 2, 1, 'EL', 'ROOM_AIR'], ''],
[['STB', 7, 3, 'EL'], ''],
[['LT', 3, 3, 'EL', ('GSL', 'LED')], ''],
[['HT', 4, 3, ('LG', 'KS', 'CL', 'GE', 'WD'),
'GE2'], ''],
[['SH', 5, 2, 'DS'], 'WIND_SOL'],
[['SH', 1, 1, ('LG', 'KS', 'CL', 'GE', 'WD'),
'CL'], ''],
[['HW', 1, 1, 'GS'], ''],
[['SQ', 1, 1], ''],
[['SH', 1, 1,
('LG', 'KS', 'CL', 'GE', 'WD')], 'WIND_COND'],
[['HS', 1, 1], ''],
[['HT', 1, 1, 'EL', 'ELEC_RAD'], ''],
[['TVS', 7, 3, 'EL'], '']]
nonsense_out = [[['LT', 4, 3, 'GS', 'ROOM_AIR'], ''],
[['CL', 1, 1, 'SL', 'ROOM_AIR'], ''],
[['RF', 1, 1, 'EL', ('LFL', 'T-8')], ''],
[['HW', 1, 1, 'GS', ('GSL', 'Inc')], '']]
# Test filters that have expected technology definitions and should match
def test_ok_filters(self):
for idx, afilter in enumerate(self.ok_filters):
self.assertEqual(rm.json_translator(rm.res_dictlist, afilter),
self.ok_out[idx])
# Test filters that have nonsensical technology definitions but
# should nonetheless match
def test_nonsense_filters(self):
for idx, afilter in enumerate(self.nonsense_filters):
self.assertEqual(rm.json_translator(rm.res_dictlist, afilter),
self.nonsense_out[idx])
# Test that filters that don't conform to the structure of the
# dicts or the expected order of data raise an error or exception
def test_fail_filters(self):
for afilter in self.fail_filters:
with self.assertRaises(KeyError):
rm.json_translator(rm.res_dictlist, afilter)
class NumpyArrayReductionTest(unittest.TestCase):
""" Test the operation of the txt_parser function to verify row
selection or deletion operations produce the expected output """
# Define sample structured array with the same form as the
# EIA data and that includes some of the rows to be removed
EIA_nrg_stock = np.array([
('HT', 1, 1, 'EL', 'ELEC_RAD', 2010, 126007.0, 1452680, 3, ''),
('HT', 1, 1, 'EL', 'ELEC_RAD', 2011, 125784.0, 1577350, 4, ''),
('HT', 1, 1, 'EL', 'ELEC_RAD', 2012, 125386.0, 1324963, 5, ''),
('HT', 1, 1, 'EL', 'ELEC_HP', 2010, 126007.0, 1452680, -1, ''),
('HT', 1, 1, 'EL', 'ELEC_HP', 2011, 125784.0, 1577350, -1, ''),
('HT', 1, 1, 'EL', 'ELEC_HP', 2012, 125386.0, 1324963, -1, ''),
('HT', 1, 1, 'GS', 'NGHP', 2010, 126007.0, 1452680, 11, ''),
('HT', 1, 1, 'GS', 'NGHP', 2011, 125784.0, 1577350, 12, ''),
('HT', 1, 1, 'GS', 'NGHP', 2012, 125386.0, 1324963, 13, ''),
('HT', 2, 3, 'KS', 'KERO_FA', 2010, 155340.0, 5955503, -1, ''),
('HT', 2, 3, 'KS', 'KERO_FA', 2011, 151349.0, 5550354, -1, ''),
('HT', 2, 3, 'KS', 'KERO_FA', 2012, 147470.0, 4490571, -1, ''),
('HT', 9, 1, 'EL', 'ELEC_RAD', 2010, 126007.0, 1452680, 3, ''),
('HT', 9, 1, 'EL', 'ELEC_RAD', 2011, 125784.0, 1577350, 4, ''),
('HT', 9, 1, 'EL', 'ELEC_RAD', 2012, 125386.0, 1324963, 5, ''),
('HT', 9, 1, 'GS', 'NGHP', 2010, 126007.0, 1452680, 11, ''),
('HT', 9, 1, 'GS', 'NGHP', 2011, 125784.0, 1577350, 12, ''),
('HT', 9, 1, 'GS', 'NGHP', 2012, 125386.0, 1324963, 13, ''),
('HT', 9, 3, 'KS', 'KERO_FA', 2010, 155340.0, 5955503, -1, ''),
('HT', 9, 3, 'KS', 'KERO_FA', 2011, 151349.0, 5550354, -1, ''),
('HT', 9, 3, 'KS', 'KERO_FA', 2012, 147470.0, 4490571, -1, ''),
('HT', 9, 2, 'GS', 'NG_RAD', 2010, 1, 3, -1, ''),
('HT', 9, 2, 'GS', 'NG_RAD', 2011, 2, 2, -1, ''),
('HT', 9, 2, 'GS', 'NG_RAD', 2012, 3, 1, -1, ''),
('HT', 9, 2, 'GS', 'NG_FA', 2010, 11, 13, -1, ''),
('HT', 9, 2, 'GS', 'NG_FA', 2011, 12, 12, -1, ''),
('HT', 9, 2, 'GS', 'NG_FA', 2012, 13, 11, -1, ''),
('CL', 1, 1, 'EL', 'GEO_HP', 2010, 126007.0, 1452680, -1, ''),
('CL', 1, 1, 'EL', 'GEO_HP', 2011, 125784.0, 1577350, -1, ''),
('CL', 1, 1, 'EL', 'GEO_HP', 2012, 125386.0, 1324963, -1, ''),
('CL', 5, 3, 'EL', 'GEO_HP', 2010, 126007.0, 1452680, -1, ''),
('CL', 5, 3, 'EL', 'GEO_HP', 2011, 125784.0, 1577350, -1, ''),
('CL', 5, 3, 'EL', 'GEO_HP', 2012, 125386.0, 1324963, -1, ''),
('CL', 2, 1, 'EL', 'ELEC_HP', 2010, 126007.0, 1452680, -1, ''),
('CL', 2, 1, 'EL', 'ELEC_HP', 2011, 125784.0, 1577350, -1, ''),
('CL', 2, 1, 'EL', 'ELEC_HP', 2012, 125386.0, 1324963, -1, ''),
('DW', 2, 1, 'EL', 'DS_WASH', 2010, 6423576.0, 9417809, -1, ''),
('DW', 2, 1, 'EL', 'DS_WASH', 2011, 6466014.0, 9387396, -1, ''),
('DW', 2, 1, 'EL', 'DS_WASH', 2012, 6513706.0, 9386813, -1, ''),
('DW', 2, 2, 'EL', 'DS_WASH', 2010, 6423576.0, 9417809, -1, ''),
('DW', 2, 2, 'EL', 'DS_WASH', 2011, 6466014.0, 9387396, -1, ''),
('DW', 2, 2, 'EL', 'DS_WASH', 2012, 6513706.0, 9386813, -1, ''),
('HW', 7, 3, 'GS', 'NG_WH', 2010, 104401.0, 1897629, -1, ''),
('HW', 7, 3, 'GS', 'NG_WH', 2011, 101793.0, 1875027, -1, ''),
('HW', 7, 3, 'GS', 'NG_WH', 2012, 99374.0, 1848448, -1, ''),
('SF', 8, 1, 'EL', 'ELEC_RAD', 2011, 78.0, 0, -1, ''),
('SF', 8, 1, 'EL', 'ELEC_HP', 2011, 6.0, 0, -1, ''),
('SF', 8, 1, 'GS', 'NG_FA', 2011, 0.0, 0, -1, ''),
('SF', 9, 1, 'EL', 'ELEC_RAD', 2011, 78.0, 0, -1, ''),
('SF', 9, 1, 'EL', 'ELEC_HP', 2011, 6.0, 0, -1, ''),
('SF', 9, 1, 'GS', 'NG_FA', 2011, 0.0, 0, -1, ''),
('ST', 3, 1, 'EL', 'ELEC_RAD', 2011, 0.0, 0, -1, ''),
('ST', 3, 1, 'EL', 'ELEC_HP', 2011, 3569.0, 0, -1, ''),
('ST', 4, 2, 'GS', 'NG_FA', 2011, 3463.0, 0, -1, ''),
('ST', 4, 2, 'GS', 'NG_FA', 2012, 0.0, 0, -1, ''),
('ST', 4, 2, 'GS', 'NG_FA', 2013, 3569.0, 0, -1, ''),
('ST', 3, 2, 'GS', 'NG_FA', 2009, 3463.0, 0, -1, ''),
('SQ', 2, 2, 0, 0, 2010, 2262.0, 3, 8245, ''),
('SQ', 2, 2, 0, 0, 2011, 2262.0, 2, 8246, ''),
('SQ', 2, 2, 0, 0, 2012, 2262.0, 233, 8247, ''),
('SQ', 1, 1, 0, 0, 2025, 232.0, 332, 8245, ''),
('SQ', 1, 1, 0, 0, 2026, 222.0, 232, 825, ''),
('SQ', 1, 1, 0, 0, 2027, 62.0, 332, 845, ''),
('HS', 7, 3, 0, 0, 2012, 3434, 0, -1, ''),
('HS', 7, 3, 0, 0, 2013, 3353, 0, -1, ''),
('HS', 7, 3, 0, 0, 2014, 3242, 0, -1, ''),
('HS', 7, 3, 0, 0, 2015, 23233, 0, -1, ''),
('HS', 7, 3, 0, 0, 2016, 3666, 0, -1, ''),
('HS', 7, 3, 0, 0, 2017, 34434, 0, -1, ''),
('HS', 7, 3, 0, 0, 2018, 3868, 0, -1, ''),
('HS', 3, 1, 0, 0, 2010, 266, 0, -1, ''),
('HS', 3, 1, 0, 0, 2011, 665, 0, -1, ''),
('HS', 3, 1, 0, 0, 2012, 66, 0, -1, ''),
('HS', 3, 1, 0, 0, 2013, 26, 0, -1, ''),
('HS', 3, 1, 0, 0, 2014, 2665, 0, -1, '')],
dtype=[('ENDUSE', '<U50'), ('CDIV', '<i4'), ('BLDG', '<i4'),
('FUEL', '<U50'), ('EQPCLASS', '<U50'), ('YEAR', '<i4'),
('EQSTOCK', '<f8'), ('CONSUMPTION', '<i4'),
('HOUSEHOLDS', '<i4'), ('BULB TYPE', '<U50')])
# Define filter to select a subset of the sample EIA supply data
EIA_nrg_stock_filter = [
[['DW', 2, 1, 'EL', 'DS_WASH'], ''],
[['HT', 1, 1, 'EL', 'ELEC_RAD'], ''],
[['HT', 2, 3, 'KS', 'KERO_FA'], ''],
[['CL', 1, 1, 'EL', 'GEO_HP'], ''],
[['HT', 9, 2, 'GS', 'NG_RAD'], '']]
# Set up selected data from EIA sample array as the basis for comparison
EIA_nrg_stock_out = [
({"2010": 9417809, "2011": 9387396, "2012": 9386813},
{"2010": 6423576, "2011": 6466014, "2012": 6513706}),
({"2010": 1452680, "2011": 1577350, "2012": 1324963},
{"2010": 126007.0, "2011": 125784.0, "2012": 125386.0}),
({"2010": 5955503, "2011": 5550354, "2012": 4490571},
{"2010": 155340.0, "2011": 151349.0, "2012": 147470.0}),
({"2010": 1452680, "2011": 1577350, "2012": 1324963},
{"2010": 126007, "2011": 125784, "2012": 125386}),
({"2010": 3, "2011": 2, "2012": 1},
{"2010": 1, "2011": 2, "2012": 3})]
# Define filter to select square footage subset of sample EIA supply data
EIA_sqft_homes_filter = [[['SQ', 2, 2], ''],
[['HT', 1, 1, 'EL', 'ELEC_RAD'], ''],
[['HS', 3, 1], ''],
]
# Set up selected data from EIA sample array as the basis for comparison
EIA_sqft_homes_out = [
{"2010": 8245, "2011": 8246, "2012": 8247},
{"2010": 3, "2011": 4, "2012": 5},
{"2010": 266, "2011": 665, "2012": 66, "2013": 26, "2014": 2665}]
# Define sample structured array comparable in form to the thermal
# loads data (note that the numeric data here do not represent
# realistic values for these data)
tloads_example = np.array([
('HT', 1, 1, 394.8, 0.28, 0.08, 0.08, 0.25, 0.38, -0.02, 0.22, -0.12),
('CL', 1, 1, 394.8, -0.01, 0.51, 0.10, 0.15, 0.14, 0.03, -0.12, 0.19),
('HT', 2, 1, 813.3, 0.29, -0.07, 0.10, 0.24, 0.38, 0.01, 0.20, -0.13),
('CL', 2, 1, 813.3, -0.01, 0.44, 0.12, 0.14, 0.14, 0.03, -0.09, 0.19),
('HT', 3, 2, 409.5, 0.27, -0.06, 0.23, 0.21, 0.48, 0.05, 0.13, -0.23),
('CL', 3, 2, 409.5, -0.02, 0.34, 0.13, 0.06, 0.09, 0.13, -0.16, 0.41),
('HT', 4, 2, 104.8, 0.29, 0.07, 0.23, 0.23, 0.44, -0.05, 0.17, -0.25),
('CL', 4, 2, 104.8, 0.00, 0.31, 0.09, 0.09, 0.13, 0.11, -0.11, 0.37),
('HT', 5, 3, 140.9, 0.44, -0.13, 0.11, 0.25, 0.33, -0.02, 0.16, 0.16),
('CL', 5, 3, 140.9, 0.00, 0.40, 0.12, 0.11, 0.14, 0.04, -0.03, 0.20),
('HT', 6, 3, 684.1, 0.47, 0.14, 0.18, 0.26, 0.39, -0.03, 0.07, -0.21),
('CL', 6, 3, 684.1, -0.01, 0.37, 0.14, 0.09, 0.14, 0.04, 0.02, 0.23)],
dtype=[('ENDUSE', '<U50'), ('CDIV', '<i4'), ('BLDG', '<i4'),
('NBLDGS', '<f8'), ('WIND_COND', '<f8'), ('WIND_SOL', '<f8'),
('ROOF', '<f8'), ('WALL', '<f8'), ('INFIL', '<f8'),
('PEOPLE', '<f8'), ('GRND', '<f8'), ('EQUIP', '<f8')])
# Specify filter to select thermal load data
tl_flt = [['HT', 3, 2, 'GS'], 'GRND']
# Set up selected data from thermal loads sample array
tloads_sample = 0.13
# Test restructuring of EIA data into stock and consumption lists
# using the EIA_Supply option to confirm that both the reported
# data and the reduced array with the remaining data are correct
def test_recording_of_EIA_data_tech(self):
for n in range(0, len(self.EIA_nrg_stock_filter)):
(a, b) = rm.nrg_stock_select(self.EIA_nrg_stock,
self.EIA_nrg_stock_filter[n])
# Compare equipment stock
self.assertEqual(a, self.EIA_nrg_stock_out[n][0])
# Compare consumption
self.assertEqual(b, self.EIA_nrg_stock_out[n][1])
# Test restructuring of EIA data into a square footage list, confirming
# that both the reported data and the reduced array with the remaining
# data are correct
# TEMP - this should also test home count numbers (and comments
# and variables names should reflect that)
def test_recording_of_EIA_data_sqft_homes(self):
for n in range(0, len(self.EIA_sqft_homes_filter)):
a = rm.sqft_homes_select(self.EIA_nrg_stock,
self.EIA_sqft_homes_filter[n])
# Compare square footage
self.assertEqual(a, self.EIA_sqft_homes_out[n])
# Test extraction of the correct value from the thermal load
# components data
def test_recording_of_thermal_loads_data(self):
self.assertEqual(rm.thermal_load_select(self.tloads_example,
self.tl_flt),
self.tloads_sample)
class DataToListFormatTest(unittest.TestCase):
""" Test operation of list_generator function (create dummy inputs
and test against established outputs) """
# Define sample AEO time horizon for this test
aeo_years = 2
# Define a sample set of stock/energy data
nrg_stock = [('HT', 1, 1, 'EL', 'ELEC_RAD', 2010, 0, 1, 3, ''),
('HT', 1, 1, 'EL', 'ELEC_RAD', 2011, 0, 1, 4, ''),
('HT', 2, 1, 'GS', 'NG_FA', 2010, 2, 3, -1, ''),
('HT', 2, 1, 'GS', 'NG_FA', 2011, 2, 3, -1, ''),
('HT', 2, 1, 'GS', 'NG_RAD', 2010, 4, 5, -1, ''),
('HT', 2, 1, 'GS', 'NG_RAD', 2011, 4, 5, -1, ''),
('CL', 2, 3, 'GS', 'NG_HP', 2010, 6, 7, -1, ''),
('CL', 2, 3, 'GS', 'NG_HP', 2011, 6, 7, -1, ''),
('CL', 1, 3, 'GS', 'NG_HP', 2010, 8, 9, -1, ''),
('CL', 1, 3, 'GS', 'NG_HP', 2011, 8, 9, -1, ''),
('SH', 1, 1, 'EL', 'EL', 2010, 10, 11, -1, ''),
('SH', 1, 1, 'EL', 'EL', 2011, 10, 11, -1, ''),
('SH', 1, 1, 'GS', 'GS', 2010, 12, 13, -1, ''),
('SH', 1, 1, 'GS', 'GS', 2011, 12, 13, -1, ''),
# ('OA ', 1, 1, 'EL', 'EL', 2010, 14, 15, -1),
# ('OA ', 1, 1, 'EL', 'EL', 2011, 14, 15, -1),
('SH', 2, 1, 'GS', 'GS', 2010, 16, 17, -1, ''),
('SH', 2, 1, 'GS', 'GS', 2011, 16, 17, -1, ''),
('SH', 3, 1, 'EL', 'EL', 2010, 18, 19, -1, ''),
('SH', 3, 1, 'EL', 'EL', 2011, 18, 19, -1, ''),
('SH', 3, 1, 'WD', 'WD', 2010, 20, 21, -1, ''),
('SH', 3, 1, 'WD', 'WD', 2011, 20, 21, -1, ''),
('STB', 1, 1, 'EL', 'TV&R', 2010, 22, 23, -1, ''),
('STB', 1, 1, 'EL', 'TV&R', 2011, 22, 23, -1, ''),
('STB', 1, 2, 'EL', 'TV&R', 2010, 24, 25, -1, ''),
('STB', 1, 2, 'EL', 'TV&R', 2011, 24, 25, -1, ''),
('EO', 2, 2, 'EL', 'MEL', 2010, 36, 37, -1, ''),
('EO', 2, 2, 'EL', 'MEL', 2011, 36, 37, -1, ''),
('SQ', 1, 1, 0, 0, 2010, 99, 100, 101, ''),
('SQ', 1, 1, 0, 0, 2011, 99, 100, 101, ''),
('LT', 1, 1, 'EL', 'GSL', 2010, 102, 0, -1, 'LED'),
('LT', 1, 1, 'EL', 'GSL', 2011, 103, 0, -1, 'LED'),
('LT', 1, 2, 'EL', 'GSL', 2010, 103, 0, -1, 'LED'),
('LT', 1, 1, 'EL', 'GSL', 2010, 179, 104, -1, 'Inc'),
('LT', 1, 1, 'EL', 'GSL', 2011, 176, 104, -1, 'Inc'),
('LT', 1, 1, 'EL', 'EXT', 2010, 103, 104, -1, 'LED'),
('HS', 1, 1, 0, 0, 2010, 299, 0, 0, ''),
('HS', 1, 1, 0, 0, 2011, 299, 0, 0, ''),
('TVS', 1, 1, 'EL', 'TV&R', 2010, 35, 757, -1, ''),
('TVS', 1, 1, 'EL', 'TV&R', 2011, 355., 787, -1, '')]
# Convert stock/energy data into numpy array with column names
nrg_stock_array = np.array(nrg_stock, dtype=[
('ENDUSE', '<U50'), ('CDIV', 'i4'), ('BLDG', 'i4'),
('FUEL', '<U50'), ('EQPCLASS', '<U50'), ('YEAR', 'i4'),
('EQSTOCK', 'i4'), ('CONSUMPTION', 'i4'), ('HOUSEHOLDS', 'i4'),
('BULBTYPE', '<U50')])
# Define a sample set of thermal load components data
loads_data = [('CL', 2, 3, 100, -0.25, 0.25, 0, 0, 0.25, 0, 0.5, 0),
('CL', 1, 2, 200, -0.1, 0.1, 0, 0, 0.4, 0, 0.6, 0),
('HT', 2, 3, 300, -0.5, 0.5, 0, 0, 0.5, 0, 0.5, 0),
('HT', 2, 1, 400, -0.75, 0.5, 0, 0, 0.25, 0, 1, 0),
('HT', 1, 1, 300, -0.2, 0.1, 0, 0.4, 0.1, 0.3, 0.3, 0),
('CL', 1, 1, 400, -0.3, 0.5, 0.1, 0.1, 0.2, 0, 0.4, 0)]
# Convert thermal loads data into numpy array with column names
loads_array = np.array(loads_data, dtype=[('ENDUSE', '<U50'),
('CDIV', 'i4'),
('BLDG', 'i4'),
('NBLDGS', 'f8'),
('WIND_COND', 'f8'),
('WIND_SOL', 'f8'),
('ROOF', 'f8'),
('WALL', 'f8'),
('INFIL', 'f8'),
('PEOPLE', 'f8'),
('GRND', 'f8'),
('EQUIP', 'f8')])
# Define a set of filters that should yield matched microsegment
# stock/energy data
ok_filters = [['new england', 'single family home',
'electricity', 'heating', 'supply',
'resistance heat'],
['new england', 'single family home',
'electricity', 'secondary heating',
'supply', 'secondary heater'],
['new england', 'single family home',
'natural gas', 'secondary heating', 'supply',
'secondary heater'],
['east north central', 'single family home',
'electricity', 'secondary heating', 'supply',
'secondary heater'],
['new england', 'single family home',
'electricity', 'TVs', 'set top box'],
['new england', 'multi family home',
'electricity', 'TVs', 'set top box'],
['mid atlantic', 'multi family home',
'electricity', 'other', 'electric other'],
['new england', 'single family home',
'electricity', 'heating',
'demand', 'ground'],
['mid atlantic', 'single family home',
'natural gas', 'heating', 'demand',
'windows conduction'],
['mid atlantic', 'mobile home',
'natural gas', 'cooling', 'demand',
'windows solar'],
['new england', 'single family home',
'total square footage'],
['east north central', 'single family home',
'other fuel', 'secondary heating', 'supply',
'secondary heater (wood)'],
['new england', 'single family home',
'electricity', 'lighting',
'general service (LED)'],
['new england', 'single family home', 'new homes'],
['new england', 'single family home', 'total homes'],
['new england', 'single family home',
'electricity', 'TVs', 'TV'],
['new england', 'single family home',
'electricity', 'lighting',
'general service (incandescent)']]
# Define a set of filters that should yield zeros for stock/energy
# data because they do not make sense
nonsense_filters = [['mid atlantic', 'mobile home', 'natural gas',
'heating', 'room AC'],
['pacific', 'single family home',
'electricity (on site)', 'water heating', 'solar WH'],
['new england', 'single family home',
'distillate', 'TVs',
'set top box']]
# Define a set of filters that should raise an error because certain
# filter elements do not have any match in the microsegment dict keys
fail_filters = [['the moon', 'single family home',
'electricity', 'heating', 'supply',
'resistance heat'],
['new england', 'single family cave',
'natural gas', 'secondary heating'],
['new england', 'mobile home',
'human locomotion', 'lighting', 'reflector'],
['south atlantic', 'single family home',
'distillate', 'secondary heating', 'supply',
'portable heater'],
['mid atlantic', 'mobile home',
'electricity', 'heating',
'supply', 'boiler (wood fired)'],
['east north central', 'multi family home',
'natural gas', 'cooling', 'demand', 'windows frames'],
['pacific', 'multi family home', 'electricity',
'other', 'beer cooler'],
['pacific', 'multi home', 'total square footage'],
['pacific', 'multi family home', 'square foot'],
['mid atlantic', 'mobile home', 'renewables',
'water heating', 'solar WH'],
['east north central', 'single family home',
'other fuel', 'secondary heating', 'demand',
'secondary heater (wood)'],
['pacific', 'multi family home', 'total square footage',
'natural gas', 'water heating'],
['pacific', 'multi family home', 'new homes',
'natural gas', 'water heating'],
['pacific', 'multi family home', 'total homes',
'natural gas', 'water heating']]
# Define array of lighting weighting factors expected to be output
# by the function under test
lt_factor_expected = np.array([
(1, 1, 'GSL', 'Inc', '2010', 0.91477392),
(1, 1, 'GSL', 'Inc', '2011', 0.90574519),
(1, 2, 'GSL', 'Inc', '2010', 0.82494111),
(1, 2, 'GSL', 'Inc', '2011', 0.81193743),
(3, 1, 'GSL', 'Inc', '2010', 0.87472457),
(3, 1, 'GSL', 'Inc', '2011', 0.86130072),
(3, 2, 'GSL', 'Inc', '2010', 0.87774796),
(3, 2, 'GSL', 'Inc', '2011', 0.87285453),
(1, 1, 'GSL', 'LED', '2010', 0.08522608),
(1, 1, 'GSL', 'LED', '2011', 0.09425481),
(1, 2, 'GSL', 'LED', '2010', 0.17505889),
(1, 2, 'GSL', 'LED', '2011', 0.18806257),
(3, 1, 'GSL', 'LED', '2010', 0.12527543),
(3, 1, 'GSL', 'LED', '2011', 0.13869928),
(3, 2, 'GSL', 'LED', '2010', 0.12225204),
(3, 2, 'GSL', 'LED', '2011', 0.12714547),
(1, 1, 'LFL', 'T12', '2010', 0.41604117),
(1, 1, 'LFL', 'T12', '2011', 0.41195155),
(1, 2, 'LFL', 'T12', '2010', 0.29310758),
(1, 2, 'LFL', 'T12', '2011', 0.28591929),
(3, 1, 'LFL', 'T12', '2010', 0.43981098),
(3, 1, 'LFL', 'T12', '2011', 0.43168629),
(3, 2, 'LFL', 'T12', '2010', 0.30942591),
(3, 2, 'LFL', 'T12', '2011', 0.30073385),
(1, 1, 'LFL', 'T-8', '2010', 0.33771134),
(1, 1, 'LFL', 'T-8', '2011', 0.33900962),
(1, 2, 'LFL', 'T-8', '2010', 0.40173711),
(1, 2, 'LFL', 'T-8', '2011', 0.40616518),
(3, 1, 'LFL', 'T-8', '2010', 0.30517175),
(3, 1, 'LFL', 'T-8', '2011', 0.30744705),
(3, 2, 'LFL', 'T-8', '2010', 0.26764825),
(3, 2, 'LFL', 'T-8', '2011', 0.276772),
(1, 1, 'LFL', 'T-5', '2010', 0.24624749),
(1, 1, 'LFL', 'T-5', '2011', 0.24903882),
(1, 2, 'LFL', 'T-5', '2010', 0.30515531),
(1, 2, 'LFL', 'T-5', '2011', 0.30791553),
(3, 1, 'LFL', 'T-5', '2010', 0.25501727),
(3, 1, 'LFL', 'T-5', '2011', 0.26086665),
(3, 2, 'LFL', 'T-5', '2010', 0.42292584),
(3, 2, 'LFL', 'T-5', '2011', 0.42249415)],
dtype=[('CDIV', 'i4'), ('BLDG', 'i4'), ('EQPCLASS', 'U4'),
('BULBTYPE', 'U4'), ('YEAR', 'i4'), ('FACTOR', 'f8')])
# Define the set of outputs that should be yielded by the "ok_filters"
# information above
ok_out = [[{'stock': {"2010": 0, "2011": 0},
'energy': {"2010": 1, "2011": 1}},
nrg_stock_array],
[{'stock': {"2010": 10, "2011": 10},
'energy': {"2010": 11, "2011": 11}},
np.hstack([nrg_stock_array[:10], nrg_stock_array[12:]])],
[{'stock': {"2010": 12, "2011": 12},
'energy': {"2010": 13, "2011": 13}},
np.hstack([nrg_stock_array[:12], nrg_stock_array[14:]])],
[{'stock': {"2010": 18, "2011": 18},
'energy': {"2010": 19, "2011": 19}},
np.hstack([nrg_stock_array[:16], nrg_stock_array[18:]])],
[{'stock': {"2010": 22, "2011": 22},
'energy': {"2010": 23, "2011": 23}},
np.hstack([nrg_stock_array[:20], nrg_stock_array[22:]])],
[{'stock': {"2010": 24, "2011": 24},
'energy': {"2010": 25, "2011": 25}},
np.hstack([nrg_stock_array[:22], nrg_stock_array[24:]])],
[{'stock': {"2010": 36, "2011": 36},
'energy': {"2010": 37, "2011": 37}},
np.hstack([nrg_stock_array[:24], nrg_stock_array[26:]])],
[{'stock': 'NA',
'energy': {"2010": 0.3, "2011": 0.3}},
nrg_stock_array],
[{'stock': 'NA',
'energy': {"2010": -6.0, "2011": -6.0}},
nrg_stock_array],
[{'stock': 'NA',
'energy': {"2010": 1.75, "2011": 1.75}},
nrg_stock_array],
[{"2010": 101, "2011": 101},
np.hstack([nrg_stock_array[0:26], nrg_stock_array[28:]])],
[{'stock': {"2010": 20, "2011": 20},
'energy': {"2010": 21, "2011": 21}},
np.hstack([nrg_stock_array[0:18], nrg_stock_array[20:]])],
[{'stock': {"2010": 102, "2011": 103},
'energy': {"2010": 8.86351232, "2011": 9.8025002399}},
nrg_stock_array],
[{"2010": 299, "2011": 299},
np.hstack([nrg_stock_array[0:-4], nrg_stock_array[-2:]])],
[{"2010": 3, "2011": 4}, nrg_stock_array],
[{'stock': {"2010": 35, "2011": 355},
'energy': {"2010": 757, "2011": 787}}, nrg_stock_array[:-2]],
[{'stock': {'2010': 179, '2011': 176},
'energy': {'2010': 95.13648768, '2011': 94.19749976}},
nrg_stock_array]]
# Define the set of outputs (empty dicts) that should be yielded
# by the "nonsense_filters" given above
nonsense_out = [{'stock': {}, 'energy': {}},
{'stock': {}, 'energy': {}},
{'stock': {}, 'energy': {}}]
def dict_check(self, dict1, dict2, msg=None):
"""Compare two dicts for equality, allowing for floating point error.
"""
# zip() and zip_longest() produce tuples for the items
# identified, where in the case of a dict, the first item
# in the tuple is the key and the second item is the value;
# in the case where the dicts are not of identical size,
# zip_longest() will use the fillvalue created below as a
# substitute in the dict that has missing content; this
# value is given as a tuple to be of comparable structure
# to the normal output from zip_longest()
fill_val = ('substituted entry', 5.2)
# In this structure, k and k2 are the keys that correspond to
# the dicts or unitary values that are found in i and i2,
# respectively, at the current level of the recursive
# exploration of dict1 and dict2, respectively
for (k, i), (k2, i2) in itertools.zip_longest(sorted(dict1.items()),
sorted(dict2.items()),
fillvalue=fill_val):
# Confirm that at the current location in the dict structure,
# the keys are equal; this should fail if one of the dicts
# is empty, is missing section(s), or has different key names
self.assertEqual(k, k2)
# If the recursion has not yet reached the terminal/leaf node
if isinstance(i, dict):
# Test that the dicts from the current keys are equal
self.assertCountEqual(i, i2)
# Continue to recursively traverse the dict
self.dict_check(i, i2)
# At the terminal/leaf node
else:
# Compare the values, allowing for floating point inaccuracy
self.assertAlmostEqual(dict1[k], dict2[k2], places=2)
# Test filter that should match and generate stock/energy data
def test_ok_filters(self):
for idx, afilter in enumerate(self.ok_filters):
# Call the function under test and capture its outputs
a = rm.list_generator(self.nrg_stock_array,
self.loads_array,
afilter,
self.aeo_years,
self.lt_factor_expected)
# Check the contents of the output dict
self.dict_check(a, self.ok_out[idx][0])
# Test filters that should match but ultimately do not make sense
def test_nonsense_filters(self):
for idx, afilter in enumerate(self.nonsense_filters):
# Call the function under test and capture its outputs
a = rm.list_generator(self.nrg_stock_array,
self.loads_array,
afilter,
self.aeo_years,
self.lt_factor_expected)
# Check the contents of the output dict
self.assertEqual(a, self.nonsense_out[idx])
# Test filters that should raise an error
def test_fail_filters(self):
for idx, afilter in enumerate(self.fail_filters):
with self.assertRaises(KeyError):
# Expect the function to raise an error with each call
# using the filters supplied from fail_filters
rm.list_generator(self.nrg_stock_array,
self.loads_array,
afilter,
self.aeo_years,
self.lt_factor_expected)
class LightingEfficiencyTablePrepTest(unittest.TestCase):
""" Test the function that restructures the lighting performance
data drawn from the AEO cost, performance, and lifetime file for
residential lighting into a lighting efficiency (inverse of
lighting performance, units of W/lm instead of lm/W) lookup
table for each year and each combination of fixture and bulb type. """
# Array of lighting CPL data with a similar structure to the
# data obtained from the AEO but with fewer years, fewer
# lighting types, and excluding columns that are not used
# by this function (the indicated values are not representative
# of the performance or anticipated performance improvements
# in actual lighting technologies)
lighting_cpl_data = np.array(
[(2011, 2012, 12, 45, 'GSL', 'INC'),
(2013, 2020, 22, 24, 'GSL', 'INC'),
(2011, 2015, 60, 75, 'GSL', 'LED'),
(2016, 2017, 78, 89, 'GSL', 'LED'),
(2018, 2020, 105, 200, 'GSL', 'LED'),
(2011, 2012, 12, 100, 'REF', 'INC'),
(2013, 2020, 99, 99, 'REF', 'INC'),
(2011, 2012, 78, 100, 'REF', 'LED'),
(2013, 2020, 99, 200, 'REF', 'LED'),
(2011, 2014, 30, 60, 'LFL', 'T12'),
(2015, 2017, 44, 75, 'LFL', 'T12'),
(2018, 2020, 56, 100, 'LFL', 'T12'),
(2011, 2016, 41, 35, 'LFL', 'T-8'),
(2017, 2020, 49, 77, 'LFL', 'T-8'),
(2011, 2012, 39, 89, 'LFL', 'T-5'),
(2013, 2013, 57, 91, 'LFL', 'T-5'),
(2014, 2016, 62, 99, 'LFL', 'T-5'),
(2017, 2020, 66, 101, 'LFL', 'T-5')],
dtype=[('FirstYear', 'i4'), ('LastYear', 'i4'), ('lm_per_W', 'i4'),
('Watts', 'i4'), ('Application', 'U8'), ('BulbType', 'U8')])
# Number of years represented in the synthetic CPL data
total_n_years = 10
# Number of lighting types (combinations of fixture and bulb types)
# in the synthetic CPL data
n_lighting_types = 7
# Array of lighting data restructured into a numpy structured
# array for each fixture type and bulb type
lighting_eff_result = np.array(
[('GSL', 'INC', 0.833333333, 0.833333333, 0.731707317, 0.731707317,
0.731707317, 0.78, 0.78, 0.826771654, 0.826771654, 0.826771654),
('GSL', 'LED', 0.166666667, 0.166666667, 0.268292683, 0.268292683,
0.268292683, 0.22, 0.22, 0.173228346, 0.173228346, 0.173228346),
('LFL', 'T12', 0.399849962, 0.399849962, 0.442865264,
0.451349432, 0.359344077, 0.359344077, 0.389920424,
0.334298119, 0.334298119, 0.334298119),
('LFL', 'T-8', 0.292573143, 0.292573143, 0.324047754,
0.330255682, 0.385637546, 0.385637546, 0.350132626,
0.382054993, 0.382054993, 0.382054993),
('LFL', 'T-5', 0.307576894, 0.307576894, 0.233086981,
0.218394886, 0.255018377, 0.255018377, 0.25994695,
0.283646889, 0.283646889, 0.283646889),
('REF', 'INC', 0.8666667, 0.8666667, 0.8918919, 0.8918919, 0.8918919,
0.8918919, 0.8918919, 0.8918919, 0.8918919, 0.8918919),
('REF', 'LED', 0.1333333, 0.1333333, 0.1081081, 0.1081081, 0.1081081,
0.1081081, 0.1081081, 0.1081081, 0.1081081, 0.1081081)],
dtype=[('Application', 'U4'), ('BulbType', 'U4'), ('2011', 'f8'),
('2012', 'f8'), ('2013', 'f8'), ('2014', 'f8'),
('2015', 'f8'), ('2016', 'f8'), ('2017', 'f8'),
('2018', 'f8'), ('2019', 'f8'), ('2020', 'f8')])
# Test that the lighting performance data is correctly restructured
# into lighting efficiency data for each bulb and fixture type
def test_lighting_efficiency_table_prep(self):
result = rm.lighting_eff_prep(self.lighting_cpl_data,
self.total_n_years,
self.n_lighting_types)
# Extract the numeric entries for matching lighting and bulb
# types from the reference array and test array and compare
# the year values
for row in self.lighting_eff_result:
# Grab the matching row from the function result array
fn_result_row = result[np.all([
result['Application'] == row['Application'],
result['BulbType'] == row['BulbType']], axis=0)]
# Compare the numeric values for each year reported in the
# rows with the matching fixture and bulb types
self.assertTrue(all(
[np.allclose(fn_result_row[name], row[name])
for name in row.dtype.names
if name not in ('Application', 'BulbType')]))
class LightingStockWeightedFactorsTest(unittest.TestCase):
""" Test the function that takes the normalized bulb efficiency
weighting factors and the stock data for each fixture and bulb
type combination and combines them to generate efficiency and
stock weighted multipliers that can be used to split up the
energy use data reported in RESDBOUT only for one bulb type
for each fixture type. """
# Sample input lighting efficiency factor array
lighting_eff_result = np.array(
[('GSL', 'INC', 0.833333333, 0.833333333, 0.731707317),
('GSL', 'LED', 0.166666667, 0.166666667, 0.268292683),
('LFL', 'T12', 0.399849962, 0.399849962, 0.442865264),
('LFL', 'T-8', 0.292573143, 0.292573143, 0.324047754),
('LFL', 'T-5', 0.307576894, 0.307576894, 0.233086981)],
dtype=[('Application', 'U4'), ('BulbType', 'U4'),
('2011', 'f8'), ('2012', 'f8'), ('2013', 'f8')])
# Number of lighting types (combinations of fixture and bulb types)
# in the synthetic CPL data (equal to the number of rows in the
# lighting_eff_result test array)
n_lighting_types = 5
# Number of years represented in the synthetic CPL data and the
# synthetic stock and energy data
total_n_years = 3
# Sample energy and stock data array
nrg_stock_array = np.array([
('LT', 1, 1, 'EL', 'GSL',
2011, 164420.0, 1452680, 0, 'INC'),
('LT', 1, 1, 'EL', 'GSL',
2012, 159428.0, 1577350, 0, 'INC'),
('LT', 1, 1, 'EL', 'GSL',
2013, 153895.0, 1324963, 0, 'INC'),
('LT', 1, 2, 'EL', 'GSL',
2011, 92810.0, 1452680, 0, 'INC'),
('LT', 1, 2, 'EL', 'GSL',
2012, 87534.0, 1577350, 0, 'INC'),
('LT', 1, 2, 'EL', 'GSL',
2013, 83958.0, 1324963, 0, 'INC'),
('LT', 3, 1, 'EL', 'GSL',
2011, 103295.0, 1452680, 0, 'INC'),
('LT', 3, 1, 'EL', 'GSL',
2012, 95567.0, 1577350, 0, 'INC'),
('LT', 3, 1, 'EL', 'GSL',
2013, 89356.0, 1324963, 0, 'INC'),
('LT', 3, 2, 'EL', 'GSL',
2011, 177692.0, 1452680, 0, 'INC'),
('LT', 3, 2, 'EL', 'GSL',
2012, 175438.0, 1577350, 0, 'INC'),
('LT', 3, 2, 'EL', 'GSL',
2013, 172984.0, 1324963, 0, 'INC'),
('LT', 1, 1, 'EL', 'GSL',
2011, 76592.0, 1452680, 0, 'LED'),
('LT', 1, 1, 'EL', 'GSL',
2012, 82953.0, 1577350, 0, 'LED'),
('LT', 1, 1, 'EL', 'GSL',
2013, 90485.0, 1324963, 0, 'LED'),
('LT', 1, 2, 'EL', 'GSL',
2011, 98475.0, 1452680, 0, 'LED'),
('LT', 1, 2, 'EL', 'GSL',
2012, 101374.0, 1577350, 0, 'LED'),
('LT', 1, 2, 'EL', 'GSL',
2013, 104884.0, 1324963, 0, 'LED'),
('LT', 3, 1, 'EL', 'GSL',
2011, 73968.0, 1452680, 0, 'LED'),
('LT', 3, 1, 'EL', 'GSL',
2012, 76948.0, 1577350, 0, 'LED'),
('LT', 3, 1, 'EL', 'GSL',
2013, 81524.0, 1324963, 0, 'LED'),
('LT', 3, 2, 'EL', 'GSL',
2011, 123744.0, 1452680, 0, 'LED'),
('LT', 3, 2, 'EL', 'GSL',
2012, 127777.0, 1577350, 0, 'LED'),
('LT', 3, 2, 'EL', 'GSL',
2013, 134395.0, 1324963, 0, 'LED'),
('LT', 1, 1, 'EL', 'LFL',
2011, 172698.0, 1452680, 0, 'T12'),
('LT', 1, 1, 'EL', 'LFL',
2012, 171593.0, 1577350, 0, 'T12'),
('LT', 1, 1, 'EL', 'LFL',
2013, 169985.0, 1324963, 0, 'T12'),
('LT', 1, 2, 'EL', 'LFL',
2011, 92416.0, 1452680, 0, 'T12'),
('LT', 1, 2, 'EL', 'LFL',
2012, 90115.0, 1577350, 0, 'T12'),
('LT', 1, 2, 'EL', 'LFL',
2013, 87888.0, 1324963, 0, 'T12'),
('LT', 3, 1, 'EL', 'LFL',
2011, 185455.0, 1452680, 0, 'T12'),
('LT', 3, 1, 'EL', 'LFL',
2012, 181322.0, 1577350, 0, 'T12'),
('LT', 3, 1, 'EL', 'LFL',
2013, 176931.0, 1324963, 0, 'T12'),
('LT', 3, 2, 'EL', 'LFL',
2011, 76209.0, 1452680, 0, 'T12'),
('LT', 3, 2, 'EL', 'LFL',
2012, 75481.0, 1577350, 0, 'T12'),
('LT', 3, 2, 'EL', 'LFL',
2013, 73852.0, 1324963, 0, 'T12'),
('LT', 1, 1, 'EL', 'LFL',
2011, 191584.0, 1452680, 0, 'T-8'),
('LT', 1, 1, 'EL', 'LFL',
2012, 192987.0, 1577350, 0, 'T-8'),
('LT', 1, 1, 'EL', 'LFL',
2013, 194125.0, 1324963, 0, 'T-8'),
('LT', 1, 2, 'EL', 'LFL',
2011, 173111.0, 1452680, 0, 'T-8'),
('LT', 1, 2, 'EL', 'LFL',
2012, 174952.0, 1577350, 0, 'T-8'),
('LT', 1, 2, 'EL', 'LFL',
2013, 176339.0, 1324963, 0, 'T-8'),
('LT', 3, 1, 'EL', 'LFL',
2011, 175865.0, 1452680, 0, 'T-8'),
('LT', 3, 1, 'EL', 'LFL',
2012, 176488.0, 1577350, 0, 'T-8'),
('LT', 3, 1, 'EL', 'LFL',
2013, 177539.0, 1324963, 0, 'T-8'),
('LT', 3, 2, 'EL', 'LFL',
2011, 90090.0, 1452680, 0, 'T-8'),
('LT', 3, 2, 'EL', 'LFL',
2012, 94938.0, 1577350, 0, 'T-8'),
('LT', 3, 2, 'EL', 'LFL',
2013, 100068.0, 1324963, 0, 'T-8'),
('LT', 1, 1, 'EL', 'LFL',
2011, 132882.0, 1452680, 0, 'T-5'),
('LT', 1, 1, 'EL', 'LFL',
2012, 134854.0, 1577350, 0, 'T-5'),
('LT', 1, 1, 'EL', 'LFL',
2013, 135321.0, 1324963, 0, 'T-5'),
('LT', 1, 2, 'EL', 'LFL',
2011, 125079.0, 1452680, 0, 'T-5'),
('LT', 1, 2, 'EL', 'LFL',
2012, 126162.0, 1577350, 0, 'T-5'),
('LT', 1, 2, 'EL', 'LFL',
2013, 127754.0, 1324963, 0, 'T-5'),
('LT', 3, 1, 'EL', 'LFL',
2011, 139793.0, 1452680, 0, 'T-5'),
('LT', 3, 1, 'EL', 'LFL',
2012, 142444.0, 1577350, 0, 'T-5'),
('LT', 3, 1, 'EL', 'LFL',
2013, 144879.0, 1324963, 0, 'T-5'),
('LT', 3, 2, 'EL', 'LFL',
2011, 135412.0, 1452680, 0, 'T-5'),
('LT', 3, 2, 'EL', 'LFL',
2012, 137854.0, 1577350, 0, 'T-5'),
('LT', 3, 2, 'EL', 'LFL',
2013, 140276.0, 1324963, 0, 'T-5'),
('SQ', 2, 2, 0, 0, 2011, 2262.0, 2332, 8245, ''),
('SQ', 2, 2, 0, 0, 2012, 2262.0, 2332, 8246, ''),
('SQ', 2, 2, 0, 0, 2013, 2262.0, 2332, 8247, ''),