forked from trynthink/scout
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmseg.py
1453 lines (1207 loc) · 64.5 KB
/
mseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
import re
import numpy
import json
import argparse
import csv
import mseg_techdata as rmt
class EIAData(object):
"""Class of variables naming the EIA data files to be imported.
Attributes:
res_energy (str): The file name for the AEO residential energy
and stock data.
"""
def __init__(self):
self.res_energy = 'RESDBOUT.txt'
class UsefulVars(object):
"""Class of variables that would otherwise be global.
Attributes:
json_in (str): JSON file containing the structure to be populated
with AEO data.
json_out (str): FIlename of the JSON file to be produced with
residential energy use, building stock, and equipment stock
data added.
res_tloads (str): Filename for the residential building thermal
load components data.
aeo_metadata (str): File name for the custom AEO metadata JSON.
unused_supply_re (str): A string usable as a regular expression
defining the parameters (and thus the corresponding rows)
from the AEO data that are not needed for the "supply"
(i.e., equipment) energy and stock data. The two letter
codes represent: (Switch From | Switch To | Fuel Pumps).
unused_demand_re (str): A string usable as a regular expression
defining the parameters (and thus the corresponding rows)
from the AEO data that should be retained to calculate the
demand (i.e., envelope) energy and stock data. Because the
demand only applies to heating and cooling, this regex is
configured to exclude every row not coded with one of the
two letter codes given. These codes represent:
(Heating | Cooling | Secondary Heating).
"""
def __init__(self):
self.json_in = 'microsegments.json'
self.json_out = 'mseg_res_cdiv.json'
self.res_tloads = 'Res_TLoads_Final.txt'
self.aeo_metadata = 'metadata.json'
self.unused_supply_re = r'^\(b\'(SF|ST |FP).*'
self.unused_demand_re = r'^\(b\'(?!(HT|CL|SH)).*'
# Define a series of dicts that will translate imported JSON
# microsegment names to AEO microsegment(s)
# Census division dict
cdivdict = {'new england': 1,
'mid atlantic': 2,
'east north central': 3,
'west north central': 4,
'south atlantic': 5,
'east south central': 6,
'west south central': 7,
'mountain': 8,
'pacific': 9
}
# Building type dict (residential)
bldgtypedict = {'single family home': 1,
'multi family home': 2,
'mobile home': 3
}
# Fuel type dict
fueldict = {'electricity (on site)': 'SL',
'electricity': 'EL',
'natural gas': 'GS',
'distillate': 'DS',
'other fuel': ('LG', 'KS', 'CL', 'GE', 'WD')
}
# Note that currently in RESDBOUT.txt, electric resistance heaters are
# categorized under GE (geothermal) fuel. Fuel types "SL" and "NG" have
# been removed from the "other fuel" category. "SL" (solar) fuel
# corresponds to solar insolation for solar water heating, and is only
# associated with the "SOLAR" technology type. "NG" is only used by the
# "FP" end use, and in an attempt to avoid problems later if EIA
# changes their natural gas fuel type code to "NG" from "GS", it is
# also left out of the "other fuel" definition.
# End use dict
endusedict = {'total square footage': 'SQ', # AEO reports ft^2 as an end use
'new homes': 'HS',
'total homes': 'HT',
'heating': 'HT',
'secondary heating': 'SH',
'cooling': 'CL',
'fans and pumps': 'FF',
'ceiling fan': 'CFN',
'lighting': 'LT',
'water heating': 'HW',
'refrigeration': 'RF',
'cooking': 'CK',
'drying': 'DR',
'TVs': {'TV': 'TVS',
'set top box': 'STB',
'DVD': 'DVD',
'home theater and audio': 'HTS',
'video game consoles': 'VGC'},
'computers': {'desktop PC': 'DPC',
'laptop PC': 'LPC',
'monitors': 'MON',
'network equipment': 'NET'},
'other': {'clothes washing': 'CW',
'dishwasher': 'DW',
'freezers': 'FZ',
'rechargeables': 'BAT',
'coffee maker': 'COF',
'dehumidifier': 'DEH',
'electric other': 'EO',
'microwave': 'MCO',
'pool heaters and pumps': 'PHP',
'security system': 'SEC',
'portable electric spas': 'SPA',
'wine coolers': 'WCL',
'other appliances': 'OA'}}
# Technology types (supply) dict
technology_supplydict = {'solar WH': 'SOLAR_WH',
'electric WH': 'ELEC_WH',
'total homes (tech level)': 'ELEC_RAD',
'resistance heat': 'ELEC_RAD',
'ASHP': 'ELEC_HP',
'GSHP': 'GEO_HP',
'central AC': 'CENT_AIR',
'room AC': 'ROOM_AIR',
'linear fluorescent (T-12)': ('LFL', 'T12'),
'linear fluorescent (T-8)': ('LFL', 'T-8'),
'linear fluorescent (LED)': ('LFL', 'LED'),
'general service (incandescent)': ('GSL', 'Inc'),
'general service (CFL)': ('GSL', 'CFL'),
'general service (LED)': ('GSL', 'LED'),
'reflector (incandescent)': ('REF', 'Inc'),
'reflector (CFL)': ('REF', 'CFL'),
'reflector (halogen)': ('REF', 'HAL'),
'reflector (LED)': ('REF', 'LED'),
'external (incandescent)': ('EXT', 'Inc'),
'external (CFL)': ('EXT', 'CFL'),
'external (high pressure sodium)': ('EXT', 'HPS'),
'external (LED)': ('EXT', 'LED'),
'furnace (NG)': 'NG_FA',
'boiler (NG)': 'NG_RAD',
'NGHP': 'NG_HP',
'furnace (distillate)': 'DIST_FA',
'boiler (distillate)': 'DIST_RAD',
'furnace (kerosene)': 'KERO_FA',
'furnace (LPG)': 'LPG_FA',
'stove (wood)': 'WOOD_HT',
'resistance': 'GE2',
'secondary heater (kerosene)': 'KS',
'secondary heater (LPG)': 'LG',
'secondary heater (wood)': 'WD',
'secondary heater (coal)': 'CL',
'secondary heater': ''
}
# Technology types (demand) dict
technology_demanddict = {'windows conduction': 'WIND_COND',
'windows solar': 'WIND_SOL',
'wall': 'WALL',
'roof': 'ROOF',
'ground': 'GRND',
'infiltration': 'INFIL',
'people gain': 'PEOPLE',
'equipment gain': 'EQUIP'}
# Form residential dictlist for use in JSON translator
res_dictlist = [endusedict, cdivdict, bldgtypedict, fueldict,
technology_supplydict, technology_demanddict]
def json_translator(dictlist, filterformat):
"""Determine filtering keys for finding information in the input data
This function takes the list of keys corresponding to a location
in the microsegments JSON (and thus the data to obtain from the
EIA data file or thermal load components file) and converts it
into a nested list of strings and integer values that can be
used to obtain the desired data from those files.
The translation from the human-readable text strings from the
microsegments JSON into the values to be used with the input
data source files is facilitated by the translation dicts
passed to the function.
This function also facilitates the combination of data by
indicating e.g., multiple fuel types for an end use and
technology type to consolidate the energy use and stock for
all of those fuel types under a single key series in the
microsegments JSON.
Args:
dictlist (list): A list of the variable names for the dicts
that relate the strings in the JSON to the codes in the
EIA data files.
filterformat (list): A list of strings corresponding to the
current location in the microsegments JSON file.
Returns:
Nested list of string and numeric keys that correspond to the
indices used in the EIA energy and stock data and the envelope
load components data.
"""
# Set base filtering list of lists (1st element supply filter, 2nd demand)
json_translate = [[], '']
# Set an indicator for whether a "demand" filtering element has been found
# (special treatment)
demand_indicator = 0
# Set an indicator for whether the technology level is handled on the end
# use level - i.e., set top boxes (special treatment)
enduse_techlevel = 0
# Set an indicator for what level in the microsegment hierarchy we are in:
# 1) end use, 2) census division, 3) bldg type, 4) fuel type,
# 5) "supply" tech type, 6) "demand" tech type)
ms_level = 0
# Restructure the filterformat variable in the case of a "total homes"
# update, where "total homes" uses the same filter codes as a heating,
# electricity, boiler (electric) microsegment in RESDBOUT,
# but with the relevant data in the "HOUSEHOLDS" column
if 'total homes' in filterformat and len(filterformat) == 3:
filterformat = filterformat[0:2]
filterformat.extend(['electricity', 'total homes',
'total homes (tech level)'])
# Reduce dictlist as appropriate to filtering information (if not a
# "demand", microsegment, remove "technology_demanddict" from dictlist;
# if not a "supply" microsegment", remove "technology_supplydict" from
# dictlist; if a microsegment with no technology level (i.e. water heating)
# remove "technology_supplydict" and "technology_demanddict" from dictlist;
# if a microsegment square footage or a new homes update, include only
# "fueldict", "cdivdict", and "bldgtypedict" (square footage and new
# homes are included on the fuel type level in the microsegments JSON).
if 'demand' in filterformat:
dictlist_loop = dictlist[:(len(dictlist) - 2)]
dictlist_add = dictlist[-1]
dictlist_loop.append(dictlist_add)
elif 'total square footage' in filterformat and len(filterformat) == 3 or \
'new homes' in filterformat and len(filterformat) == 3:
dictlist_loop = dictlist[:(len(dictlist) - 3)]
elif len(filterformat) <= 4:
dictlist_loop = dictlist[:(len(dictlist) - 2)]
else:
dictlist_loop = dictlist[:(len(dictlist) - 1)]
# Loop through "dictlist" and determine whether any elements of
# "filterformat" input are in dict keys; if so, add key value to output
for j in dictlist_loop:
# Count key matches for given dict
match_count = 0
ms_level += 1
for num, key in enumerate(filterformat):
# Check whether element is in dict keys
if key in j.keys():
match_count += 1
# "Demand" technologies added to 2nd element of filtering list
if demand_indicator != 1:
# If there are more levels in a keyed item, go down branch
if isinstance(j[key], dict):
nextkey = filterformat[num + 1]
if nextkey in j[key].keys():
json_translate[0].append(j[key][nextkey])
# Update enduse_techlevel indicator
enduse_techlevel = 1
else:
json_translate[0].append(j[key])
break
else:
if isinstance(j[key], dict):
nextkey = filterformat[num + 1]
if nextkey in j[key].keys():
json_translate[1] = str(j[key][nextkey])
else:
json_translate[1] = str(j[key])
break
# Flag a "demand" microsegment
elif key == 'demand':
demand_indicator = 1
# If there was no key match for given dict and we don't have special
# case of a technology being handled on the end use level, raise error
if (match_count == 0 and ms_level != (len(dictlist) - 1)) or \
(match_count == 0 and ms_level == (len(dictlist) - 1) and
enduse_techlevel == 0):
raise(KeyError("Filter list element not found in dict keys!"))
# Return updated filtering list of lists: [[supply filter],[demand filter]]
return json_translate
def thermal_load_select(tl_data, sel):
"""Extract a specified thermal load component
For the census division, building type, and end use specified,
select the corresponding thermal load component factor/multiplier
from the thermal load components array. The end uses specified
for this function will be limited to either heating or cooling,
given that those are the energy requirements related to the
building envelope.
Args:
tl_data (numpy.ndarray): An array of thermal load component factors.
sel (list): A nested list of indices for selecting the relevant
data, created by json_translator.
Returns:
A scalar value corresponding to the thermal load component
factor for the specified end use (heating or cooling),
census division, and building type.
"""
# Select the appropriate data from the thermal loads data array
tl_data_sel = tl_data[numpy.all([tl_data['ENDUSE'] == sel[0][0],
tl_data['CDIV'] == sel[0][1],
tl_data['BLDG'] == sel[0][2]], axis=0)]
# Extract the demand modifier value (the fraction of heating or
# cooling load gained/lost through the relevant exterior surface)
# in the appropriate column using the second value in 'sel'
tloads_component = tl_data_sel[sel[1]][0]
return tloads_component
def nrg_stock_select(data, sel):
"""Extract and restructure energy and stock data for a microsegment
For the specific microsegment identified by 'sel,' this function
extracts the corresponding energy use and equipment stock data
from the EIA AEO data array and restructures it into dicts to be
added to the output JSON database.
In cases where there are multiple values reported for each year,
this function will sum those values together such that the energy
and stock data always have a single key for each year.
Args:
data (numpy.ndarray): An array of AEO energy, equipment stock,
and household count data given by microsegment.
sel (list): A nested list of indices for selecting the relevant
data, created by json_translator.
Returns:
A dict for energy and a dict for stock data, with keys for
each year of available data for the specified microsegment.
"""
# Define initial stock and energy dicts
group_stock = {}
group_energy = {}
# Select data for the specified census division and building type
data_sel = data[numpy.all([data['CDIV'] == sel[0][1],
data['BLDG'] == sel[0][2]], axis=0)]
# Multiple end uses can be provided, but try first to see if only
# one end use is provided; if not, select data for all of the
# end uses given
try:
data_sel = data_sel[numpy.all(
[data_sel['ENDUSE'] == sel[0][0]], axis=0)]
except ValueError:
data_sel = data_sel[numpy.hstack([numpy.where(
data_sel['ENDUSE'] == i) for i in sel[0][0]]).flatten()]
# Multiple fuel types can be provided, but try first to see if only
# one fuel type is provided and if not, use a different approach to
# select data for all of the fuel types indicated
try:
data_sel = data_sel[numpy.all(
[data_sel['FUEL'] == sel[0][3]], axis=0)]
except ValueError:
data_sel = data_sel[numpy.hstack([numpy.where(
data_sel['FUEL'] == i) for i in sel[0][3]]).flatten()]
# If an equipment class is specified, select the subset of
# applicable data as appropriate
try:
eqp = sel[0][4]
except IndexError:
eqp = False
if eqp:
if isinstance(eqp, tuple): # Lighting
data_sel = data_sel[
numpy.all([data_sel['EQPCLASS'] == eqp[0],
data_sel['BULBTYPE'] == eqp[1]], axis=0)]
else: # Other end uses
data_sel = data_sel[
numpy.all([data_sel['EQPCLASS'] == eqp], axis=0)]
# Loop through the reduced numpy stock and energy array and
# combine the reported values together
for idx, row in enumerate(data_sel):
# If data for the year is already present for the current
# microsegment (as with microsegments that combine several
# EIA categories together), add the new stock and consumption
# values to the existing values (assume that if the year is
# present in the group_stock dict it is also in group_energy)
if row['YEAR'] in group_stock:
# Record energy consumption and stock information
# (change the year to a string to yield a valid
# JSON dict, where all keys must be strings)
group_stock[row['YEAR']] += row['EQSTOCK']
group_energy[row['YEAR']] += row['CONSUMPTION']
else:
group_stock[row['YEAR']] = row['EQSTOCK']
group_energy[row['YEAR']] = row['CONSUMPTION']
# Convert the numeric year keys in the energy and stock dicts
# to strings to be compatible with valid JSON
group_stock = {str(key): value for key, value in group_stock.items()}
group_energy = {str(key): value for key, value in group_energy.items()}
return group_energy, group_stock
def sqft_homes_select(data, sel):
"""Extract and restructure home count or square footage for a microsegment
Similar to nrg_stock_select, for the microsegment identified by
'sel,' this function extracts the corresponding house count (total
homes or new homes) or square footage from the EIA AEO data array
and restructures it into dicts to be added to the output JSON
database. The new homes and total square footage data are reported
with separate end use codes in the AEO data file; the total homes
values are reported in the "HOUSEHOLDS" column with the first end
use, building type, and technology type in each census division.
Args:
data (numpy.ndarray): An array of AEO energy, equipment stock,
and household count data given by microsegment.
sel (list): A nested list of indices for selecting the relevant
data, created by json_translator.
Returns:
A dict with keys for each year of data and the corresponding
values indicated by the selection input variable 'sel.'
"""
# Define initial square footage, new homes, or total homes lists
if (endusedict['total square footage'] in sel[0] or
endusedict['new homes'] in sel[0] or
endusedict['total homes'] in sel[0]):
group_out = {}
else:
raise ValueError('Unexpected housing stock filtering information!')
# Select home count or square footage data based on selection indices
if technology_supplydict['total homes (tech level)'] in sel[0]:
data_sel = data[numpy.all([data['ENDUSE'] == sel[0][0],
data['CDIV'] == sel[0][1],
data['BLDG'] == sel[0][2],
data['FUEL'] == sel[0][3],
data['EQPCLASS'] == sel[0][4]], axis=0)]
else:
data_sel = data[numpy.all([data['ENDUSE'] == sel[0][0],
data['CDIV'] == sel[0][1],
data['BLDG'] == sel[0][2]], axis=0)]
# Loop through the reduced numpy stock and energy (and ancillary
# data) array and restructure the reported values
for idx, row in enumerate(data_sel):
if (endusedict['total square footage'] in sel[0] or
(endusedict['total homes'] in sel[0] and
technology_supplydict['total homes (tech level)'] in sel[0])):
# Record square foot or total homes information
# (from "HOUSEHOLDS" column in RESDBOUT)
group_out[row['YEAR']] = row['HOUSEHOLDS']
elif endusedict['new homes'] in sel[0]:
# Record new homes information (from "EQSTOCK" column in RESDBOUT)
group_out[row['YEAR']] = row['EQSTOCK']
# Convert the numeric year keys in the selected home counts or
# characteristics dicts to strings to be compatible with valid JSON
group_out = {str(key): value for key, value in group_out.items()}
return group_out
def list_generator(nrg_stock, tloads, filterdata, aeo_years, lt_factors):
"""Extract the desired energy, equipment stock, or household count data
Given the data to be obtained, indicated by the keys from the
current terminal node in the JSON dict structure, this function
calls a function to convert those keys into the indices that can
be used to obtain the desired data from the input data files and
then calls the appropriate helper function to extract those data
from the energy and stock or thermal load component arrays.
This function also includes some data setup and special handling
for the lighting data because the lighting energy use data are
reported only for the first bulb type for each fixture type.
Args:
nrg_stock (numpy.ndarray): An array of AEO energy, equipment
stock, and household count data given by microsegment.
loads (numpy.ndarray): An array of thermal load component factors.
filterdata (list): A list of keys from the microsegments JSON
indicating the data to be obtained.
aeo_years (int): The number of years of data reported in the
RESDBOUT file.
lt_factors (numpy.ndarray): A numpy structured array with
lighting efficiency and stock weighted factors to be used
to break out the lighting energy use data by bulb type.
Returns:
In general, this function returns stock and energy dicts,
though for the demand (envelope component thermal loads)
microsegments, no stock applies. This function will also
return a house count or total square footage dict if indicated
by the JSON keys (in 'filterdata').
"""
# Find the corresponding text filtering information
txt_filter = json_translator(res_dictlist, filterdata)
# Specify the lighting fixture and bulb types with lighting
# energy data reported, in a format consistent with the output
# from json_translator, handling the difference in the bulb
# type string for incandescents between the AEO 2015 and 2017
# data; this approach might merit revisiting later
if aeo_years == 42: # AEO 2017 formatting
lt_with_energy = [('GSL', 'INC'), ('LFL', 'T12'),
('REF', 'INC'), ('EXT', 'INC')]
else: # AEO 2015 formatting
lt_with_energy = [('GSL', 'Inc'), ('LFL', 'T12'),
('REF', 'Inc'), ('EXT', 'Inc')]
# If the end use is lighting, create and prepare an additional
# text filter for extracting the energy data from the lighting
# type that has energy data
lt_nrg_index = ['GSL', 'LFL', 'REF', 'EXT']
addl_txt_filter = None
if 'lighting' in filterdata:
if txt_filter[0][4] not in lt_with_energy:
# Obtain the lighting tuple for the text filter that
# matches same fixture type, but for the bulb type that
# has energy data reported
new_lt_filt = lt_with_energy[lt_nrg_index.index(
txt_filter[0][4][0])]
# Construct a new text filter using the lighting type
# that has data available, and avoiding the use of
# copy.deepcopy to limit computational expense
addl_txt_filter = txt_filter[0][:4]
addl_txt_filter.append(new_lt_filt)
addl_txt_filter = [addl_txt_filter, txt_filter[1]]
# Call the appropriate input data selection function and return
# the desired result based on the type of data requested
if 'demand' in filterdata:
# Find baseline heating or cooling energy microsegment (before
# application of load component); establish reduced numpy array
group_energy_base, group_stock = nrg_stock_select(
nrg_stock, txt_filter)
# Given the discovered lists of energy/stock values, ensure
# length is equal to the number of years currently projected
# by AEO. If not, and the list isn't empty, trigger an error.
if len(group_energy_base) is not aeo_years:
if len(group_energy_base) != 0:
raise(ValueError('Error in length of discovered list!'))
# If the end use is secondary heating, change the end use
# in the filter to 'HT' from 'SH', because both primary and
# secondary heating are coded as 'HT' in the thermal loads file
if txt_filter[0][0] == 'SH':
txt_filter[0][0] = 'HT'
# Find/return appropriate thermal loads component factor
tloads_component = thermal_load_select(tloads, txt_filter)
# Apply component value to baseline energy values for final list
group_energy = {key: val * tloads_component
for key, val in group_energy_base.items()}
# Return combined energy use values and updated version of EIA demand
# data and thermal loads data with already matched data removed
return {'stock': 'NA', 'energy': group_energy}
elif 'total square footage' in filterdata or 'new homes' in filterdata or \
'total homes' in filterdata:
# Given input numpy array and 'compare from' list, return sq. footage
# projection lists and reduced numpy array (with matched rows removed)
group_sqft_homes = sqft_homes_select(nrg_stock, txt_filter)
# Given the discovered lists of sq. footage values, ensure
# length is equal to the number of years currently projected
# by AEO. If not, and the list isn't empty, trigger an error.
if len(group_sqft_homes) is not aeo_years:
if len(group_sqft_homes) != 0:
raise(ValueError('Error in length of discovered list!'))
# Return sq. footage values and updated version of EIA
# supply data with already matched data removed
return group_sqft_homes
else:
# For lighting, obtain and correct the energy data and
# separately obtain the stock data and do not delete
# any data, as lighting energy data will need to be called
# from the input array several times for each fixture type
if 'lighting' in filterdata:
# Determine whether the lighting energy information will
# need to be obtained separately
if addl_txt_filter:
# Get the lighting energy data
group_energy, _ = nrg_stock_select(
nrg_stock, addl_txt_filter)
# Get the lighting stock data
_, group_stock = nrg_stock_select(
nrg_stock, txt_filter)
else:
group_energy, group_stock = nrg_stock_select(
nrg_stock, txt_filter)
# Obtain the applicable lighting energy correction factors
lt_correction = lt_factors[numpy.all(
[lt_factors['CDIV'] == txt_filter[0][1],
lt_factors['BLDG'] == txt_filter[0][2],
lt_factors['EQPCLASS'] == txt_filter[0][4][0],
lt_factors['BULBTYPE'] == txt_filter[0][4][1]], axis=0)]
lt_correction = lt_correction['FACTOR']
# Correct the lighting energy data by applying
# the appropriate weighting factor for the current
# fixture and bulb type (note that group_energy is
# returned by nrg_stock_select() as a dict and
# thus needs to be disassembled before applying the
# weighting factor)
group_energy = dict(zip(sorted(group_energy.keys()),
list(group_energy.values())*lt_correction))
else:
# Given input numpy array and 'compare from' list, return
# energy/stock projection lists and reduced numpy array
# (with matched rows removed)
group_energy, group_stock = nrg_stock_select(
nrg_stock, txt_filter)
# Given the discovered lists of energy/stock values, ensure
# length is equal to the number of years currently projected
# by AEO. If not, and the list isn't empty, trigger an error.
if len(group_energy) is not aeo_years:
if len(group_energy) != 0:
raise(ValueError('Error in length of discovered list!'))
# Return combined stock/energy use values
return {'stock': group_stock, 'energy': group_energy}
def walk(nrg_stock, loads, json_dict, yrs_range, lt_factors, key_list=[]):
"""Recursively traverse the input dict and obtain the corresponding data
This function recursively explores the microsegments JSON key
structure (effectively a nested dict) to each leaf/terminal node
and, constructing as it goes a list of the keys corresponding to
the current location in the dict. At each terminal node, a function
is called to obtain the data from the input data files that
corresponds to the microsegment given by the keys for that
terminal node.
Args:
nrg_stock (numpy.ndarray): An array of AEO energy, equipment
stock, and household count data given by microsegment.
loads (numpy.ndarray): An array of thermal load component factors.
json_dict (dict): The empty microsegments JSON structure.
yrs_range (int): The number of years of data reported in the
RESDBOUT file.
lt_factors (numpy.ndarray): A numpy structured array with
lighting efficiency and stock weighted factors to be used
to break out the lighting energy use data by bulb type.
key_list (list): A list of keys corresponding to the current
location in the dict, ultimately indicating the data to
extract from the applicable input file(s).
Returns:
The fully populated JSON file (as a nested dict) to be output
by this module.
"""
# Explore the data structure from the current location
for key, item in json_dict.items():
# If there are additional levels in the dict, call the function
# again to advance another level deeper into the data structure
if isinstance(item, dict):
walk(nrg_stock, loads, item, yrs_range,
lt_factors, key_list + [key])
# If a leaf node has been reached, check if the second entry in
# the key list is one of the recognized building types, and if
# so, finish constructing the key list for the current location
# and obtain the data to update the dict
else:
if key_list[1] in bldgtypedict.keys():
leaf_node_keys = key_list + [key]
# Extract data from original data sources
data_dict = list_generator(nrg_stock, loads, leaf_node_keys,
yrs_range, lt_factors)
# Set dict key to extracted data
json_dict[key] = data_dict
# Return populated database structure
return json_dict
def lighting_eff_prep(lt_cpl_data, n_years, n_lt_types):
"""Calculate normalized lighting efficiency values
This function takes the lighting cost, performance, and lifetime
data from the AEO, extracts the performance data, and calculates
a normalized efficiency factor. The normalization is performed on
a fixture type basis (i.e., all GSL, REF, LFL, and EXT are
normalized separately).
These values should be combined with stock values to obtain
weighting factors that can be used to parse the lighting energy
use data, which are lumped together across all bulb types and then
reported under a single bulb type for each fixture type.
Args:
lt_cpl_data (numpy.ndarray): A numpy structured array of the
CPL data imported from the AEO source file.
n_years (int): The number of years over which CPL data are given.
n_lt_types (int): The number of lighting types (unique
combinations of fixture type, e.g., GSL, REF, etc. and
bulb type, e.g., INC, T12, etc.) present in the CPL data.
Returns:
A numpy structured array with columns specifying the fixture
type, bulb type, and year, and rows corresponding to each of
the unique combinations of fixture and bulb type. In each row,
the value reported for the year is the normalized efficiency
factor for that row (fixture and bulb type).
"""
# Extract the unique fixture types
fixture_types = numpy.unique(lt_cpl_data['Application'])
# Extract the final year of reported lighting data (and thus
# all residential data obtained from the AEO) from the CPL data
final_year = max(lt_cpl_data['LastYear'])
# Create range object for the year range from the first to last
# year in the lighting data based on fixed parameters, since the
# years reported in the lighting data itself may not be consistent
# across all lighting types reported in the file
year_range = range(final_year - n_years + 1,
final_year + 1)
# Construct list of names for numpy structured array
col_names = ['Application', 'BulbType'] + list(map(str, year_range))
# Determine dtypes for final numpy array to be returned by this function
col_dtypes = ['U4', 'U4'] + ['f8'] * len(year_range)
# Construct complete dtype specification for numpy structured array
the_dtype = list(zip(col_names, col_dtypes))
# Initialize numpy structured array for lighting data with the correct
# number of rows (the dtype specification defines the columns)
fixture_perf = numpy.zeros(n_lt_types, dtype=the_dtype)
itr = 0 # Initialize row counter variable
# Calculate the lighting efficiency for each unique combination
# of 'Application' and 'BulbType' for each year of data provided
# and populate a numpy structured array with the resulting values
for fixture in fixture_types:
# Identify the unique bulb types for this fixture type
bulb_types = numpy.unique(
lt_cpl_data[lt_cpl_data['Application'] == fixture]['BulbType'])
# Create an empty numpy array to use as an intermediate step
# to store lighting performance values for each bulb type
# associated with this fixture type
fixture_group = numpy.zeros((len(bulb_types), n_years))
# Create an empty list to which lists of fixture type and
# bulb type will be added (appended)
lt_type_codes = []
for idx, bulb in enumerate(bulb_types):
# Obtain the subset of the lighting data corresponding
# to the current bulb and fixture type
single_lt = lt_cpl_data[numpy.all([
lt_cpl_data['Application'] == fixture,
lt_cpl_data['BulbType'] == bulb], axis=0)]
# Calculate the number of times each value should repeat
# (to reflect the number of years the value stays the same)
n_repeat_times = single_lt['LastYear'] - single_lt['FirstYear'] + 1
# Generate numpy array of values using the number of
# repeats calculated for each value
bulb_perf_lm_watts, bulb_perf_watts = [numpy.repeat(
single_lt[x], n_repeat_times) for x in ['lm_per_W', 'Watts']]
# If more than the expected number of performance values
# appear in the 1D numpy array, truncate the initial values
bulb_perf_lm_watts, bulb_perf_watts = [
bulb_perf_lm_watts[-n_years:], bulb_perf_watts[-n_years:]]
# Find and remove spurious performance changes in lm/W
# performance over time, yielding a final performance array
bulb_perf = chk_false_eff(bulb_perf_lm_watts, bulb_perf_watts)
# Invert the values in bulb_perf so that higher efficiency
# bulbs (i.e., more lm/W) have lower values and thus
# will have lower energy use associated with them (when
# these efficiency multipliers are applied)
bulb_perf = 1/bulb_perf
# Insert the inverted bulb performance (referred to here as
# bulb efficiency) into the intermediate numpy array
fixture_group[idx, ] = bulb_perf
# Insert the fixture type and bulb type codes into an
# intermediate list of lists for later combination with
# the normalized bulb efficiency values
lt_type_codes.append([fixture, bulb])
# Calculate normalized efficiency weighting factors for each
# year for all of the bulb types that correspond to this
# fixture type
norm_fixture_group = fixture_group/numpy.sum(fixture_group, 0)
# Combine each row of normalized efficiency weighting factors
# with their corresponding fixture and bulb type codes and
# insert them into the final lighting efficiency values
# structured array
for idx, row in enumerate(norm_fixture_group):
fixture_perf[itr] = tuple(lt_type_codes[idx] + list(row))
itr += 1 # Increment row counter variable
# Return the final normalized (within each fixture type)
# efficiency structured numpy array
return fixture_perf
def chk_false_eff(bulb_perf_lm_watts, bulb_perf_watts):
"""Identify and remove spurious lighting performance changes across time.
This function identifies and removes spurious changes in lighting
performance array values in lm/W. Spurious values are flagged when
a lm/W lighting performance value equals 99 and the corresponding
lighting performance value in W also equals 99.
Args:
bulb_perf_lm_watts (numpy.ndarray): Annual lighting performance (lm/W).
bulb_perf_watts (numpy.ndarray): Annual lighting performance (W).
Returns: A numpy structured array of lighting performance values,
in lm/W, which shows no spurious changes in performance values.
"""
# Loop through all annual lighting performance values in lm/W
for idx in range(0, len(bulb_perf_lm_watts)):
# Identify spurious lm/W values as those equal to 99, where the
# corresponding W performance value is also 99; set these
# values to the previous performance value in the array
if idx > 0 and (bulb_perf_lm_watts[idx] == 99) and (
bulb_perf_lm_watts[idx] == bulb_perf_watts[idx]):
bulb_perf_lm_watts[idx] = bulb_perf_lm_watts[idx - 1]
return bulb_perf_lm_watts
def calc_lighting_factors(nrg_stock_data, lt_eff, n_yrs, n_lt_types):
"""Calculate normalized efficiency and stock weighted lighting multipliers.
This function takes the normalized efficiency factors and converts
them into normalized stock and efficiency factors. These factors
are needed because the AEO data include stock reported for all
fixture and bulb type combinations, but energy use is reported as
the sum for all bulb types for a given fixture type, and only
reported for one of the bulb types. For all other bulb types,
energy use is indicated as 0.
Using the normalized efficiency factors to break the energy use
up by bulb type would fail to take into account the fact that while
more efficient bulbs use less energy, if there are more of them,
total energy use might not correspond exactly to the efficiency
ratio alone.
For a given fixture type (e.g., 'EXT'), the final multipliers are
calculated by this function by taking the stock for each bulb type
and multiplying it by the efficiency factor for that bulb type and
then dividing each value by the sum of the values calculated for
all bulb types for the current fixture type. This approach thus
yields normalized values that can be multiplied by the energy use
data to obtain energy use for each bulb type.
Args:
nrg_stock_data (numpy.ndarray): A structured array of
residential energy and stock data imported from the
EIA AEO 'RESDBOUT' file.
lt_eff (numpy.ndarray): A structured array of efficiency-
weighted multipliers, given by fixture and bulb type,
with a column in the array for each year.
n_yrs (int): The number of years for which energy data are present.
n_lt_types (int): The number of lighting types (unique
combinations of fixture type, e.g., GSL, REF, etc. and
bulb type, e.g., INC, T12, etc.) present in the CPL data.
Returns:
A numpy structured array with lighting efficiency and stock
weighted factors indexed by census division, building type,
fixture type ('EQPCLASS'), bulb type ('BULBTYPE'), and year.
"""
# Extract the first year of reported lighting data from the
# AEO energy and stock data
first_yr = min(nrg_stock_data[nrg_stock_data['ENDUSE'] == 'LT']['YEAR'])
# Obtain census divisions from reported lighting data in the
# AEO energy and stock data
cdiv_list = set(nrg_stock_data[nrg_stock_data['ENDUSE'] == 'LT']['CDIV'])
# Obtain building types from reported lighting data in the
# AEO energy and stock data
bldg_list = set(nrg_stock_data[nrg_stock_data['ENDUSE'] == 'LT']['BLDG'])
# Obtain the lighting fixture types from the lighting efficiency
# factors
fixture_types = list(set(lt_eff['Application']))
# Define the dtype for the lighting weighting factors array
lt_wf_dtype = [('CDIV', 'i4'), ('BLDG', 'i4'), ('EQPCLASS', 'U4'),
('BULBTYPE', 'U4'), ('YEAR', 'i4'), ('FACTOR', 'f8')]
# Calculate the number of rows for the lighting weighting factors
# array - unique factors are calculated for each combination of
# census division, building type, year, fixture type, and bulb type
n_rows = len(cdiv_list)*len(bldg_list)*n_yrs*n_lt_types
# Preallocate the structured array for the lighting weighting factors
lt_wf = numpy.zeros(n_rows, dtype=lt_wf_dtype)
incr = 0 # Initialize array position increment variable
# Prepare the lighting weighting factors for each unique census
# division, building type, fixture type, and bulb type
for cdiv in cdiv_list:
for bldg in bldg_list:
for fixture in fixture_types:
# Select the subset of the lighting energy and stock
# data corresponding to the current census division,
# building type, and fixture type
lt_nrgst = nrg_stock_data[numpy.all(
[nrg_stock_data['ENDUSE'] == 'LT',
nrg_stock_data['CDIV'] == cdiv,
nrg_stock_data['BLDG'] == bldg,
nrg_stock_data['EQPCLASS'] == fixture], axis=0)]
# Extract the unique (no repeated entries) list of
# applicable bulb types for this fixture type
bulb_types = list(set(
lt_eff[lt_eff['Application'] == fixture]['BulbType']))
# Preallocate 1-D array to store total stock for all bulb
# types for the current lighting type
total_denom = numpy.zeros(n_yrs)
# Preallocate intermediate list to store indices for
# the lighting weighting factors calculated below
array_indices = []
# Preallocate intermediate array to store stock-weighted
# factors for all bulb types for the current lighting
# type, where each row corresponds to a bulb type and
# each column to a year
fixture_array_tmp = numpy.zeros((len(bulb_types), n_yrs))
for idx, bulb in enumerate(bulb_types):
# Obtain the stock for the current bulb type
# as a 1-D numpy array (vector with value for each year)
x = lt_nrgst[lt_nrgst['BULBTYPE'] == bulb]
x = x['EQSTOCK']