-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathadapt_find.py
1065 lines (1003 loc) · 52.1 KB
/
adapt_find.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
from __future__ import division
from __future__ import print_function
import sys
import os
import pandas as pd
import numpy as np
from scipy import stats
from scipy.stats import variation
from numpy import median
import operator
from collections import Counter
from itertools import groupby
import multiprocessing
import argparse
import itertools
from difflib import SequenceMatcher
from operator import itemgetter
import gzip
pd.options.mode.chained_assignment = None
#agrparse section
docstring= """
USAGE: python adapt_find.py <argument>
Example: python adapt_find.py ILLUMINA
Arguments:
Valid required arguments:
(1) ILLUMINA #(for Illumina sequencing)
(2) ION_TORRENT #(for Ion Torrent sequencing)
(3) 454 #(for 454 sequencing)
(4) SOLID #(for SOLID sequencing)
Use --help for more info
DESCRIPTION
Identifies adapter sequences from raw sequencing dataset, trims, maps to the genome, if an genome index is provided
"""
parser = argparse.ArgumentParser(usage = "\n" +"python %(prog)s sequencing_platform [--output_path path/to/folder] [--input_path path/to/folder] [--files list of files] \n" +"\n" + "Usage examples:\nFor Illumina as sequencing_platform and if the current directory has all FASTQ files\npython ADAPT_find.py ILLUMINA\nFor Illumina as sequencing_platform and to specify filenames explicitly\npython ADAPT_find.py ILLUMINA --files filename1.fastq filename2.fastq\nFor Illumina as sequencing_platform and to specify path to folder containing FASTQ files\npython ADAPT_find.py ILLUMINA --input_path path/to/folder\n" + "\n" + "Description:\nIdentifies adapter sequences from raw sequencing dataset, trims, maps to the genome, if an genome index is provided\n", add_help=False)
required = parser.add_argument_group('required arguments')
required.add_argument("sequencing_platform", help = """Valid arguments:
(1) ILLUMINA #(for Illumina sequencing)
(2) SOLID #(for SOLID sequencing)
(3) ION_TORRENT #(for Ion Torrent sequencing)
(4) 454 #(for 454 sequencing)""")
optional = parser.add_argument_group('optional arguments')
optional.add_argument('--min_len', default = 15, help= 'minimum length parameter for CUTADAPT')
optional.add_argument('--max_len', default = 50, help= 'maximum length parameter for CUTADAPT')
optional.add_argument('--index', help= 'paste path to bowtie index')
optional.add_argument('--input_path', help= 'paste path to FASTQ files')
optional.add_argument('--output_path', default = os.getcwd(), help= 'paste path to store output files')
optional.add_argument('--files', nargs='*', help= 'enter FASTQ files seperated by space')
optional.add_argument("-h", "--help", action='help', help='print help message')
args = parser.parse_args()
if (args.output_path!=None):
path = args.output_path
else:
path = os.getcwd()
# get the current working directory
if (args.input_path!=None) and (args.files!=None):
sys.exit('\nERROR: input path and files option cannnot be specified together. Only one of the two options can be specified. use ADAPT_find.py --help for more info\n%s'%(docstring))
elif (args.files!=None):
files= args.files
files = [f for f in files if f.split("/")[-1].endswith(".fastq") or f.split("/")[-1].endswith(".fastq.gz")]
else:
if (args.input_path==None):
cwd = os.getcwd()
else:
cwd= args.input_path
files = [cwd + "/" + f for f in os.listdir(cwd) if f.endswith(".fastq") or f.endswith(".fastq.gz")]
if len(files)==0:
sys.exit('\nERROR: Could not find any FASTQ files. Please check if the input path is specified correctly. use ADAPT_find.py --help for more info\n%s'%(docstring))
if (args.sequencing_platform!="ILLUMINA") and (args.sequencing_platform!="SOLID") and (args.sequencing_platform!="ION_TORRENT") and (args.sequencing_platform!="454"):
sys.exit('\nERROR: Invalid argument for sequencing_platform . use ADAPT_find.py --help for more info\n%s'%(docstring))
if not os.path.exists(path+ "/"+ "good-mapping"):
os.makedirs(path+ "/"+ "good-mapping")
if not os.path.exists(path+ "/"+ "bad-mapping"):
os.makedirs(path+ "/"+ "bad-mapping")
if not os.path.exists(path+ "/"+ "no_overepresented_sequences"):
os.makedirs(path+ "/"+ "no_overepresented_sequences")
if (args.index!=None):
index = args.index
#check if blast exists (version >= 2.7)
os.system("blastn -version > vers.txt")
infile= open("vers.txt", "r")
lines = infile.readlines()
if lines != []:
ver = float(lines[0].strip().split("blastn: ")[1].split("+")[0][2:])
else:
ver = "no"
if (ver == "no"):
sys.exit('\nERROR: blast not found. Please install blast 2.7 or any version released after 2.7\n')
elif (ver < 7.0):
sys.exit('\nERROR: adapt_find requires blast version 2.7 or higher\n')
else:
blastn = "blastn"
#check if bowtie version exists (version >= 1.1)
if (args.index!=None):
os.system("bowtie --version > vers.txt")
infile= open("vers.txt", "r")
lines = infile.readlines()
if lines != []:
ver1 = float(lines[0].strip().split("bowtie version")[1].split(" ")[1][:3])
else:
ver1 = "no"
if (ver1 == "no"):
sys.exit('\nERROR: bowtie not found. Please install bowtie version 1.1 or any version released after 1.1')
elif (ver1 < 1.1):
sys.exit('\nERROR: adapt_find requires bowtie 1.1 or higher\n')
else:
bowtie = "bowtie"
if os.popen("cutadapt --version").read().strip() == "":
os.system('\nERROR: Cutadapt not found. Please install cutadapt')
os.system("rm vers.txt")
def worker1(f):
filename = f.split("/")[-1].split(".")[0]
print("processing file " + filename + ".fastq")
command = "mkdir "+ "-p "+ path + "/aux_files/" + filename
os.system(command)
newpath = path + "/aux_files/" + filename + "/"
fastq_filename = filename + "_trimmed.fastq"
query_file = newpath + filename + "_query.fa"
subject_file = newpath + filename + "_subject.fa"
blast_file = newpath + filename + "_blast.csv"
blast2_file = newpath + filename + "_blast2.csv"
filename4 = newpath + filename + "_adapters.csv"
log = newpath + filename+ "_bowtie.txt"
log2 = newpath + filename+ "_cutadapt.txt"
if f.endswith(".fastq.gz"):
fastq_lst=gzip.open(f,'rb').readlines()[1::4]
fastq_lst = [line.strip().decode() for line in fastq_lst]
else:
infile= open(f)
fastq_lst = infile.readlines()[1::4]
fastq_lst = [line.strip() for line in fastq_lst]
abund = len(fastq_lst)
collapsed2 = Counter(fastq_lst)
collapsed = sorted(collapsed2.items(), key=operator.itemgetter(1), reverse=True)
ofile = open(query_file, "w")
q_fil = collapsed[0][1]
if ((abund > 5000000) and q_fil < 14000) or ((abund > 10000000) and len(collapsed[0][0]) >76) :
q_counter = 300
#elif abund > 9000000:
#q_counter = 50
else:
q_counter = 0
ind_counter = 0
for x,y in collapsed[q_counter:]:
if ind_counter < 51:
count_obj = Counter({'A':0,'T':0,'G':0,'C':0})
count_obj.update(x)
if ((min(count_obj.items(), key=itemgetter(1))[1])/len(x)) > 0.05:
ind_counter = ind_counter + 1
q_counter = q_counter + 1
ofile.write(">" + str(y) +"\n" + str(x) + "\n")
else:
continue
else:
break
ofile.close()
ofile = open(subject_file, "w")
if ((abund > 10000000) and len(collapsed[0][0]) >76) and q_counter < 400:
q_counter = 400
elif (abund > 10000000) and q_counter < 100:
q_counter = 101
else:
q_counter = q_counter
ind_counter = 0
for x,y in collapsed[q_counter:]:
if ind_counter < 201:
count_obj = Counter({'A':0,'T':0,'G':0,'C':0})
count_obj.update(x)
if ((min(count_obj.items(), key=itemgetter(1))[1])/len(x)) > 0.05:
ind_counter = ind_counter + 1
ofile.write(">" + str(y) +"\n" + str(x) + "\n")
else:
continue
else:
break
ofile.close()
new_df = pd.DataFrame(collapsed[:100], columns=['Sequence','Count'])
new_df2 = pd.DataFrame(collapsed[:40], columns=['Sequence','Count'])
if len(new_df) > 2:
new_df["Sequence_length"] = [len(word) for word in new_df['Sequence']]
new_df2["Sequence_length"] = [len(word) for word in new_df2['Sequence']]
seq_len = new_df2["Sequence_length"].tolist()
seq_median = new_df2["Sequence_length"].median()
if (len(seq_len)) > 1:
seq_var = variation(seq_len, axis=0)
else:
seq_var = 0
if ((len(seq_len)>1) and (seq_var > 0.17) and (max(seq_len) < 50)) or ((seq_median < 30) and (max(seq_len) < 50)):
print("There is no adapter sequence and the length distribution of top 100 collapsed reads is ..........")
print(list(set(new_df2["Sequence_length"].tolist())))
command = "cutadapt --trim-n -q 20 -m "+ str(args.min_len)+ " -M " + str(args.max_len) + " " + f + " 2> " + log2 + " | cutadapt -q 20 -m "+ str(args.min_len)+ " -M " + str(args.max_len) + " - > " + path + "/good-mapping/" + fastq_filename + " 2>> "+ log2
print(command)
os.system(command)
if (args.index!=None):
command = bowtie +" --best -v 1 -p 20 " + index + " -q " + path+ "/good-mapping/" + fastq_filename + " > check.sam 2> "+ log
os.system(command)
infile= open(log, "r")
lines = infile.readlines()
a = float(lines[1].strip().split("(")[1].split("%")[0])
no_reads = lines[0].strip().split("processed: ")[1]
if (a >=50):
element = [filename,"no adapter","na","na",abund,"na","na", no_reads,a,"good"]
return element
else:
command = "mv " + path + "/good-mapping/"+ fastq_filename + " " + path+ "/bad-mapping/" + fastq_filename
print(command)
os.system(command)
element = [filename,"no adapter","na","na",abund,"na","na", no_reads,a,"bad"]
return element
else:
element = [filename,"no adapter","na","na",abund,"na","na", "na","na","na"]
return element
sequences = new_df["Sequence"].tolist()
kmer = 25
while(kmer!=0):
kmers_collapsed = sorted(Counter([x[:kmer] for x in sequences]).items(), key=operator.itemgetter(1), reverse=True)
if (float(kmers_collapsed[0][1])/float(len(new_df))) > 0.9:
break
else:
kmer = kmer - 1
forward_adapter = kmers_collapsed[0][0]
kmer = 25
while(kmer!=0):
kmers = Counter([x[-kmer:] for x in sequences])
kmers_collapsed = sorted(Counter([x[-kmer:] for x in sequences]).items(), key=operator.itemgetter(1), reverse=True)
if (float(kmers_collapsed[0][1])/float(len(new_df))) > 0.9:
break
else:
kmer = kmer - 1
reverse_adapter = kmers_collapsed[0][0]
if (len(forward_adapter) > 2) and (len(reverse_adapter) > 2):
command = "cutadapt -q 20 -m "+ str(args.min_len)+ " -M " + str(args.max_len) + " " + "-g ^" + forward_adapter + " " + f + " 2> " + log2 + " | cutadapt -q 20 -m "+ str(args.min_len)+ " -M " + str(args.max_len) + " -a " + reverse_adapter + " - > " + path + "/good-mapping/" + fastq_filename + " 2>> "+ log2
print(command)
os.system(command)
infile= open(log2, "r")
lines = infile.readlines()
cut_adapt = []
for line in lines:
if "Reads with adapters" in line:
cut_adapt.append(line.strip().replace(" ", "").split("(")[1].split(")")[0])
if (args.index!=None):
command = bowtie +" --best -v 1 -p 20 " + index + " -q " + path + "/good-mapping/" + fastq_filename + " > check.sam 2> "+ log
print(command)
os.system(command)
adapter = "5 prime = " +forward_adapter + " & 3 prime = " + reverse_adapter
infile= open(log, "r")
lines = infile.readlines()
a = float(lines[1].strip().split("(")[1].split("%")[0])
no_reads = lines[0].strip().split("processed: ")[1]
if (a >=50):
element = [filename,"5&3'-anchored",forward_adapter,reverse_adapter,abund,cut_adapt[0],cut_adapt[1],no_reads,a,"good"]
return element
else:
command = "mv " + path + "/good-mapping/"+ fastq_filename + " " + path + "/bad-mapping/" + fastq_filename
print(command)
os.system(command)
element = [filename,"5&3'-anchored",forward_adapter,reverse_adapter,abund,cut_adapt[0],cut_adapt[1],no_reads,a,"bad"]
return element
else:
element = [filename,"5&3'-anchored",forward_adapter,reverse_adapter,abund,cut_adapt[0],cut_adapt[1],"na","na","na"]
return element
#check now the median length
command = blastn + " -task blastn-short -ungapped -max_hsps 2 -query " + query_file + " -subject " + subject_file + " -outfmt '10 qseqid sseqid qseq length evalue qstart sstart' -out " + blast_file
os.system(command)
csv = pd.read_csv(blast_file)
csv.columns = ['query', 'subject', 'aligned_seq', 'aligned_length', 'evalue', 'qstart', 'sstart']
fo = open(blast_file,"w")
csv.to_csv(fo, sep = ",", index=False)
fo.close()
d = csv["sstart"].median()
e = csv["qstart"].median()
csv.insert(3, "adapter", "")
nom_length=csv["aligned_length"].median()
max_length=csv["aligned_length"].max()
print("Median length of aligned sequences for filename - " + str(filename) + " is " + str(nom_length))
if max_length > 100:
csv = csv.loc[~(csv["aligned_length"] <= 60)]
csv = csv.loc[~((csv["qstart"] <= 20) & (csv["sstart"] <= 20))]
csv = csv.loc[~((csv["qstart"] >= 100) & (csv["sstart"] >= 100))]
elif (nom_length >= 20) or (max_length > 50) or ((abund > 10000000) and len(collapsed[0][0]) >76):
if (seq_median-nom_length) <= 10:
csv = csv.loc[~((csv["qstart"] <= 5) & (csv["sstart"] <= 5))]
csv = csv.loc[~(csv["aligned_length"] < 10)]
elif (seq_median-nom_length) >= 40:
csv = csv.loc[~((csv["qstart"] <= 5) | (csv["sstart"] <= 5))]
csv = csv.loc[~((csv["qstart"] <= 15) & (csv["sstart"] <= 15))]
csv = csv.loc[~(csv["aligned_length"] < 8)]
else:
csv = csv.loc[~((csv["qstart"] <= 5) | (csv["sstart"] <= 5))]
csv = csv.loc[~((csv["qstart"] <= 15) & (csv["sstart"] <= 15))]
csv = csv.loc[~(csv["aligned_length"] < 15)]
if csv["sstart"].median() >= 15:
csv = csv.loc[~(csv["sstart"] < 15)]
if csv["qstart"].median() >= 15:
csv = csv.loc[~(csv["qstart"] < 15)]
csv.reset_index(drop=True,inplace=True)
elif (10 < nom_length < 20) :
csv = csv.loc[~((csv["qstart"] <= 5) | (csv["sstart"] <= 5))]
csv = csv.loc[~((csv["qstart"] <= 15) & (csv["sstart"] <= 15))]
csv = csv.loc[~(csv["aligned_length"] < 10)]
csv.reset_index(drop=True,inplace=True)
else:
csv = csv.loc[~((csv["qstart"] <= 15) | (csv["sstart"] <= 15))]
csv.reset_index(drop=True,inplace=True)
csv.sort_values('aligned_length', ascending=False, inplace=True)
csv.reset_index(drop=True,inplace=True)
if (nom_length <= 50) and (max_length >= 60):
csv = csv.loc[~(csv["aligned_length"] >= 60)]
csv.reset_index(drop=True,inplace=True)
if (len(csv)==0):
element = [filename,"no adapter","na","na",abund,"na","na","na","na","na"]
command = "cp "+ filename + ".fastq" + " no_overepresented_sequences/"
print(command)
os.system(command)
return element
nasa = pd.DataFrame([],columns=list(csv))
grouped = csv.groupby('query')
def trim(group):
group.reset_index(drop=True,inplace=True)
for i in range (0,len(group)):
b = group.at[i,'aligned_length']
if (b >= 21):
seq = group.at[i,'aligned_seq'][:20]
group.at[i,'adapter']= seq
else:
seq = group.at[i,'aligned_seq']
group.at[i,'adapter']= seq
m=group["qstart"].tolist()
# group most_common output by frequency
freqs = groupby(Counter(m).most_common(), lambda x:x[1])
# pick off the first group (highest frequency)
q = [val for val,count in next(iter(freqs))[1]]
q.append(q[0]+1)
q.append(q[0]+2)
q.append(q[0]+3)
group = group.loc[group["qstart"].isin(q)]
group = group.loc[group["evalue"] < 0.5]
group.reset_index(drop=True,inplace=True)
return group
if (nom_length > 10):
for name,group in grouped:
result = trim(group)
if len(result) !=0:
nasa=nasa.append(result, ignore_index=True)
else:
nasa = csv.loc[(csv["aligned_length"] < 15)]
if (len(nasa)==0):
element = [filename,"no adpater","na","na", abund, "na","na","na", "na","na"]
command = "cp "+ filename + " no_overepresented_sequences/"
print(command)
os.system(command)
return element
print("Writing BLAST output")
nasa.insert(4, "adapter_length", "")
nasa['adapter_length'] = [len(word) for word in nasa['adapter']]
if (nom_length <= 10):
nasa = nasa.sort_values('aligned_seq', ascending=True )
nasa.reset_index(drop=True,inplace=True)
nasa['adapter'] = [word for word in nasa['aligned_seq']]
i=0
v= 0
master_df =[]
while(i<=(len(nasa)-2)):
seed = nasa.at[i,'aligned_seq']
match = nasa.at[i+1,'aligned_seq']
k = len(match)-len(seed)
if (seed == match[:-k]) or (seed == match):
j=i+1
while(j<=(len(nasa))-1):
seed = nasa.at[i,'aligned_seq']
match = nasa.at[j,'aligned_seq']
m = len(match)-len(seed)
if (seed == match) or (seed == match[:-m]):
j = j+1
else:
break
df = "nasa_" + str(v)
df_temp = nasa.iloc[i:j,0:8]
df_temp.reset_index(drop=True,inplace=True)
df =df_temp
master_df.append(df)
v=v+1
i = j
else:
i = i+1
if (len(master_df) >= 2):
master_df = sorted(master_df, key=len)
master_df = master_df[-2:]
adap_lst = []
for ad in master_df[::-1]:
adap_lst.append(ad.at[0,'aligned_seq'])
adapter = adap_lst[0]
for i in range(0,(len(adap_lst)-1)):
seed = adap_lst[i+1]
match = SequenceMatcher(None, adapter, seed).find_longest_match(0, len(adapter), 0, len(seed))
temp = (adapter[match.a: match.a + match.size])
if len(temp) >= 5:
adapter = temp
for elem in adap_lst:
if (adapter == elem[:len(adapter)]):
if len(elem) > len(adapter):
adapter = elem
fo = open(filename4,"w")
nasa.to_csv(fo, sep = ",", index=False)
fo.close()
k = len(adapter)-nom_length
if (k > 1):
adapter = adapter[:-int(k)]
elif (len(master_df) == 1):
max_df = max(master_df, key=len)
adapter = max_df.at[0,'aligned_seq']
print(nasa.head())
fo = open(filename4,"w")
nasa.to_csv(fo, sep = ",", index=False)
fo.close()
k = len(adapter)-nom_length
if (k > 1):
adapter = adapter[:-int(k)]
else:
nasa['adapter'] = [word for word in nasa['aligned_seq']]
fo = open(filename4,"w")
nasa.to_csv(fo, sep = ",", index=False)
fo.close()
print(nasa.head())
master=nasa["adapter"].tolist()
adapter = max(master, key=master.count)
k = len(adapter)-nom_length
if (k > 1):
adapter = adapter[:-int(k)]
nasa['adapter_length'] = [len(word) for word in nasa['adapter']]
print(nasa.head())
else:
m=nasa["adapter_length"].median()
#nasa = nasa.loc[nasa["adapter_length"] >= m]
nasa['adapter'] = [word[:int(m)] for word in nasa['adapter']]
fo = open(filename4,"w")
nasa.to_csv(fo, sep = ",", index=False)
fo.close()
print(nasa.head())
m=nasa["sstart"].tolist()
# group most_common output by frequency
freqs = groupby(Counter(m).most_common(), lambda x:x[1])
# pick off the first group (highest frequency)
q = [val for val,count in next(iter(freqs))[1]][0]
master=nasa["adapter"].tolist()
adap_elem = Counter(master)
collapsed = sorted(adap_elem.items(), key=operator.itemgetter(1), reverse=True)
lim = int(0.2 * len(nasa))
if (len(collapsed)>3) and (lim < collapsed[1][1]):
collapsed = [item for item in collapsed if item[1] >= lim]
elif (len(collapsed)>=3):
collapsed = collapsed[:3]
if (q_fil < 14500) or (q > 30) or (abund > 10000000):
fil = 0
for x,y in collapsed:
fil = fil + y
if ((len(collapsed) > 2) and ((float(collapsed[1][1]/fil)) >= 0.15)) or ((abund > 10000000) and len(collapsed[0][0]) >76):
lim = 3
else:
lim = 2
adap_lst = []
for x,y in collapsed[:lim]:
adap_lst.append(x)
if (len(adap_lst) > 1):
adapter = adap_lst[0]
for i in range(1,len(adap_lst)):
seed = adap_lst[i]
match = SequenceMatcher(None, adapter, seed).find_longest_match(0, len(adapter), 0, len(seed))
temp = (adapter[match.a: match.a + match.size])
if len(temp) > 10:
adapter = temp
for elem in adap_lst:
if (adapter == elem[:len(adapter)]):
if len(elem) > len(adapter):
adapter = elem
else:
adapter = collapsed[0][0]
else:
adapter = collapsed[0][0]
adap_lst = collapsed
print ("\n" + "Putative three prime end adapters for filename - " + filename + " is ")
print (adap_lst)
if len(forward_adapter) > 3:
print("Five prime end adapter sequence for filename - " + filename + " is " + str(forward_adapter))
print("Three prime end adapter sequence for filename - " + filename + " is " + str(adapter) + "\n" + "Trimming with CUTADAPT" + "\n")
if len(forward_adapter) > 3:
command = "cutadapt -g ^" + forward_adapter + " -m " + str(args.min_len) + " -M " + str(args.max_len) + " " + f + " 2> " + log2 + " | cutadapt -q 20 " + "-m " + str(args.min_len)+ " -M " + str(args.max_len) + " -a " + adapter + " - > " + path + "/good-mapping/" + fastq_filename + " 2>> "+ log2
print(command)
os.system(command)
infile= open(log2, "r")
lines = infile.readlines()
cut_adapt = []
for line in lines:
if "Reads with adapters" in line:
cut_adapt.append(line.strip().replace(" ", "").split("(")[1].split(")")[0])
if (args.index!=None):
command = bowtie +" --best -v 1 -p 20 " + index + " -q " + path + "/good-mapping/" + fastq_filename + " > check.sam 2> "+ log
print(command)
os.system(command)
infile= open(log, "r")
lines = infile.readlines()
a = float(lines[1].strip().split("(")[1].split("%")[0])
no_reads = lines[0].strip().split("processed: ")[1]
if (a >=50):
element = [filename,"5'-anchored&3'-normal", forward_adapter,adapter,abund, cut_adapt[0],cut_adapt[1],no_reads,a,"good"]
return element
else:
command = "mv " + path + "/good-mapping/"+ fastq_filename + " " + path + "/bad-mapping/" + fastq_filename
element = [filename,"5'-anchored&3'-normal", forward_adapter,adapter,abund, cut_adapt[0],cut_adapt[1],no_reads,a,"bad"]
return element
else:
element = [filename,"5'-anchored&3'-normal", forward_adapter,adapter,abund, cut_adapt[0],cut_adapt[1],"na","na","na"]
return element
else:
command = "cutadapt -q 20 -m "+ str(args.min_len)+ " -M " + str(args.max_len) + " -a " + adapter + " -o " + path + "/good-mapping/" + fastq_filename + " " + f + " > "+ log2
print(command)
os.system(command)
def cut(x):
infile= open(x, "r")
lines = infile.readlines()
for line in lines:
if "Reads with adapters" in line:
valu = float(line.strip().replace(" ", "").split("(")[1].split(")")[0].split("%")[0])
return valu
d = cut(log2)
if (d < 25):
new_lst = []
collapsed = sorted(collapsed2.items(), key=operator.itemgetter(1), reverse=True)
new_lst = []
for x,y in collapsed:
count_obj = Counter({'A':0,'T':0,'G':0,'C':0})
count_obj.update(x)
if (((min(count_obj.items(), key=itemgetter(1))[1])/len(x)) >= 0.10) and count_obj['N']==0:
new_lst.append((x,y))
print ("len of new_lst is " + str(filename) + " " + str(len(new_lst)))
filtered = [(x,y) for x,y in new_lst if y==1]
print ("len of filtered list is " + str(filename) + " " + str(len(filtered)))
ofile = open(query_file, "w")
for x,y in filtered[:1000]:
ofile.write(">" + str(y) +"\n" + str(x) + "\n")
ofile.close()
ofile = open(subject_file, "w")
for x,y in filtered[1000:5000]:
ofile.write(">" + str(y) +"\n" + str(x) + "\n")
ofile.close()
command = "blastn -task blastn-short -ungapped -max_hsps 1 -query " + query_file + " -subject " + subject_file + " -outfmt '10 qseqid sseqid qseq length evalue qstart sstart' -out " + blast2_file
os.system(command)
csv = pd.read_csv(blast2_file)
csv.columns = ['query', 'subject', 'aligned_seq', 'aligned_length', 'evalue', 'qstart', 'sstart']
csv.to_csv(blast2_file, sep = ",", index=False)
csv.insert(3,"adapter","")
csv['adapter'] = [word[:13] for word in csv['aligned_seq']]
#asan = csv.loc[csv["sstart"] >= 25]
#asan = asan.loc[asan["qstart"] >= 25]
asan = csv.loc[csv["aligned_length"] < 19]
asan = asan.loc[asan["aligned_length"] > 13]
asan = asan.loc[asan["evalue"] < 0.12]
asan = asan.loc[((asan["qstart"] >= 30) & (asan["sstart"] >= 30))]
fo = open(filename4,"w")
asan.to_csv(fo, sep = ",", index=False)
fo.close()
print (asan.head())
adap_lst = sorted(Counter(asan["adapter"].tolist()).items(), key=operator.itemgetter(1), reverse=True)
if len(adap_lst) > 10:
adap_lst = adap_lst[:10]
adap_lst2 = [ x for x,y in adap_lst]
if len(adap_lst2) > 1:
adap_lst = adap_lst2[:2]
print (adap_lst)
adapter = adap_lst2[0]
for i in range(1,len(adap_lst)):
seed = adap_lst[i]
match = SequenceMatcher(None, adapter, seed).find_longest_match(0, len(adapter), 0, len(seed))
temp = (adapter[match.a: match.a + match.size])
if len(temp) > 10:
adapter = temp
for elem in adap_lst2:
if (adapter == elem[:len(adapter)]):
if len(elem) > len(adapter):
adapter = elem
print ("adpater for filename " + str(filename) + " is " + str(adapter))
command = "cutadapt -q 20 -m "+ str(args.min_len)+ " -M " + str(args.max_len) + " -a " + adapter + " -o " + path + "/good-mapping/" + fastq_filename + " " + f + " > "+ log2
print (command)
os.system(command)
d = cut(log2)
d = str(d) + "%"
if (args.index!=None):
command = bowtie +" --best -v 1 -p 20 " + index + " -q " + path + "/good-mapping/" + fastq_filename + " > check.sam 2> "+ log
print(command)
os.system(command)
infile= open(log, "r")
lines = infile.readlines()
a = float(lines[1].strip().split("(")[1].split("%")[0])
no_reads = lines[0].strip().split("processed: ")[1]
if (a >=50):
element = [filename,"3'-normal","na",adapter,abund,"na",str(d),no_reads,a,"good"]
return element
else:
command = "mv " + path + "/good-mapping/"+ fastq_filename + " " + path + "/bad-mapping/" + fastq_filename
print(command)
os.system(command)
element = [filename,"3'-normal","na",adapter,abund,"na",str(d),no_reads,a,"bad"]
return element
else:
element = [filename,"3'-normal","na",adapter,abund,"na",str(d),"na","na","na"]
return element
def worker2(f):
filename = f.split(".")[0]
command = "mkdir "+ "-p "+ path + "aux_files/" + filename
os.system(command)
newpath = path + "/aux_files/" + filename + "/"
fastq_filename = filename + "_trimmed.fastq"
query_file = newpath + filename + "_query.fa"
subject_file = newpath + filename + "_subject.fa"
over_rep = newpath + filename + "_overrep.csv"
over_rep2 = newpath + filename + "_overrep2.csv"
blast_file = newpath + filename + "_blast.csv"
filename4 = newpath + filename + "_adapters.csv"
log = newpath + filename+ "_bowtie.txt"
log2 = newpath + filename+ "_cutadapt.txt"
if f.endswith(".fastq.gz"):
fastq_lst=gzip.open(f,'rb').readlines()[1::4]
fastq_lst = [line.strip().decode() for line in fastq_lst]
else:
infile= open(f)
fastq_lst = infile.readlines()[1::4]
fastq_lst = [line.strip() for line in fastq_lst]
abund = len(fastq_lst)
collapsed = Counter(fastq_lst)
collapsed = sorted(collapsed.items(), key=operator.itemgetter(1), reverse=True)
ofile = open(query_file, "w")
if len(collapsed) > 365:
q_counter = 200
else:
q_counter = 0
ind_counter = 0
print("Total length of unique sequences is " + str(len(collapsed)))
for x,y in collapsed[q_counter:]:
q_counter = q_counter + 1
if ind_counter < 15:
count_obj = Counter({'A':0,'T':0,'G':0,'C':0})
count_obj.update(x)
if ((count_obj[min(count_obj)])/len(x) > 0.01) or (len(collapsed)<365):
ind_counter = ind_counter + 1
ofile.write(">" + str(y) +"\n" + str(x) + "\n")
else:
continue
else:
break
ofile.close()
ofile = open(subject_file, "w")
if (len(collapsed)> 500) and (q_counter <= 300):
q_counter = 300
ind_counter = 0
for x,y in collapsed[q_counter:]:
if ind_counter < 100:
count_obj = Counter({'A':0,'T':0,'G':0,'C':0})
count_obj.update(x)
if ((count_obj[min(count_obj)])/len(x) > 0.01) or (len(collapsed)<365):
ind_counter = ind_counter + 1
ofile.write(">" + str(y) +"\n" + str(x) + "\n")
else:
continue
else:
break
ofile.close()
new_df2 = pd.DataFrame(collapsed[:15], columns=['Sequence','Count'])
if len(new_df2) > 2:
new_df2["Sequence_length"] = [len(word) for word in new_df2['Sequence']]
seq_len = new_df2["Sequence_length"].tolist()
seq_median = new_df2["Sequence_length"].median()
if (len(seq_len)) > 1:
seq_var = variation(seq_len, axis=0)
else:
seq_var = 0
if ((len(seq_len)>1) and (seq_var > 0.17) and (max(seq_len) < 50)) or ((seq_median < 30) and (max(seq_len) < 50)):
print("There is no adapter sequences and the length distribution of sequences is ..........")
print(seq_len)
command = "cutadapt --trim-n" + " -m "+ str(args.min_len)+ " -M " + str(args.max_len) + " " + f + " 2> " + log2 + " | cutadapt -q 20 -m "+ str(args.min_len)+ " -M " + str(args.max_len) + " " + " - > " + path + "/good-mapping/" + fastq_filename + " 2>> "+ log2
print(command)
os.system(command)
if (args.index!=None):
command = bowtie + " --best -v 1 -p 20 " + index + " -q " + path + "/good-mapping/" + fastq_filename + " > check.sam 2> "+ log
os.system(command)
infile= open(log, "r")
lines = infile.readlines()
a = float(lines[1].strip().split("(")[1].split("%")[0])
no_reads = lines[0].strip().split("processed: ")[1]
if (a >=50):
element = [filename,"na","na","na",abund,"na","na", no_reads,a,"good"]
return element
else:
command = "mv " + path + "/good-mapping/"+ fastq_filename + " " + path + "/bad-mapping/" + fastq_filename
print(command)
os.system(command)
element = [filename,"na","na","na",abund,"na","na", no_reads,a,"bad"]
return element
else:
element = [filename,"na","na","na",abund,"na","na","na","na","na"]
return element
#check now the median length
command = blastn + " -task blastn-short -ungapped -max_hsps 2 -query " + query_file + " -subject " + subject_file + " -outfmt '10 qseqid sseqid qseq length evalue qstart sstart' -out " + blast_file
print (command)
os.system(command)
csv = pd.read_csv(blast_file)
csv.columns = ['query', 'subject', 'aligned_seq', 'aligned_length', 'evalue', 'qstart', 'sstart']
fo = open(blast_file,"w")
csv.to_csv(fo, sep = ",", index=False)
fo.close()
df1 = csv.loc[csv["qstart"] < 15]
df2 = csv.loc[csv["qstart"] >= 15]
master=df1["aligned_seq"].tolist()
adap_elem = Counter(master)
collapsed = sorted(adap_elem.items(), key=operator.itemgetter(1), reverse=True)
collapsed = [x for x in collapsed if len(x[0])>17]
collapsed = [x for x in collapsed if len(x[0])<20]
adap_lst = []
for x,y in collapsed[:3]:
adap_lst.append(x)
adapter =adap_lst[0]
for elem in adap_lst[1:]:
seed = elem
match = SequenceMatcher(None, adapter, seed).find_longest_match(0, len(adapter), 0, len(seed))
temp = (adapter[match.a: match.a + match.size])
if len(temp) > 12:
adapter = temp
fiveprime_adapter = adapter
master=df2["aligned_seq"].tolist()
adap_elem = Counter(master)
collapsed = sorted(adap_elem.items(), key=operator.itemgetter(1), reverse=True)
collapsed = [x for x in collapsed if len(x[0]) > 17]
adap_lst = []
for x,y in collapsed[:3]:
adap_lst.append(x)
adapter =adap_lst[0]
for elem in adap_lst[1:]:
seed = elem
match = SequenceMatcher(None, adapter, seed).find_longest_match(0, len(adapter), 0, len(seed))
temp = (adapter[match.a: match.a + match.size])
if len(temp) > 12:
adapter = temp
for elem in adap_lst:
if (adapter == elem[:len(adapter)]):
if len(elem) > len(adapter):
adapter = elem
threeprime_adapter = adapter
d = df1["qstart"].mode()[0]
e = df2["qstart"].mode()[0]
if d in range(0,6):
print("5 prime adapter OK")
else:
print("WARNING: Unusual query start position for fiveprime_adapter")
if e in range(0,6):
print("WARNING: Unusual query start position for threeprime_adapter")
else:
print("3 prime adapter OK")
print("5prime_adapter is " + fiveprime_adapter)
print("3prime_adapter is " + threeprime_adapter)
adapter = "5 prime = " +fiveprime_adapter + " & 3 prime = " + threeprime_adapter
command = "cutadapt -q 20 -e 0.25 -m "+ str(args.min_len)+ " -M " + str(args.max_len) + " -g " + fiveprime_adapter + " " + f + " 2> " + log2 + " | cutadapt -q 20 -m "+ str(args.min_len)+ " -M " + str(args.max_len) + " -a " + threeprime_adapter + " - > " + path + "/good-mapping/" + fastq_filename + " 2>> "+ log2
print(command)
os.system(command)
infile= open(log2, "r")
lines = infile.readlines()
cut_adapt = []
for line in lines:
if "Reads with adapters" in line:
cut_adapt.append(line.strip().replace(" ", "").split("(")[1].split(")")[0])
if (args.index!=None):
command = bowtie +" --best -v 1 -p 20 " + index + " -q " + path + "/good-mapping/" + fastq_filename + " > check.sam 2> "+ log
print(command)
os.system(command)
infile= open(log, "r")
lines = infile.readlines()
a = float(lines[1].strip().split("(")[1].split("%")[0])
no_reads = lines[0].strip().split("processed: ")[1]
if (a >=50):
element = [filename,"both",fiveprime_adapter,threeprime_adapter,abund,cut_adapt[0],cut_adapt[1],no_reads,a,"good"]
return element
else:
command = "mv " + path + "/good-mapping/"+ fastq_filename + " " + path + "/bad-mapping/" + fastq_filename
print(command)
os.system(command)
element = [filename,"both",fiveprime_adapter,threeprime_adapter,abund,cut_adapt[0],cut_adapt[1], no_reads,a,"bad"]
return element
else:
element = [filename,"both",fiveprime_adapter,threeprime_adapter,abund,cut_adapt[0],cut_adapt[1],"na","na","na"]
return element
def worker3(f):
print("processing file " + f)
if f.endswith(".fastq.gz"):
os.system("gunzip " + f)
f = f.split(".fastq.gz")[0] + ".fastq"
os.system("perl -X csfq2fq.pl " + f + " > q_fastq/" + f.split(".fastq")[0] + "_q.fastq")
if f.endswith(".fastq.gz"):
os.system("gzip " + f)
filename = f.split(".")[0]
command = "mkdir "+ "-p "+ "/aux_files/" + filename
os.system(command)
newpath = path + "aux_files/" + filename + "/"
query_file = newpath + filename + "_query.fa"
subject_file = newpath + filename + "_subject.fa"
blast_file = newpath + filename + "_blast.csv"
infile= open("q_fastq/" + f.split(".fastq")[0] + "_q.fastq")
fastq_lst = infile.readlines()[1::4]
fastq_lst = [line.strip() for line in fastq_lst]
abund = len(fastq_lst)
collapsed = Counter(fastq_lst)
collapsed = sorted(collapsed.items(), key=operator.itemgetter(1), reverse=True)
ofile = open(query_file, "w")
q_counter = 0
ind_counter = 0
for x,y in collapsed[q_counter:]:
if ind_counter < 51:
count_obj = Counter({'A':0,'T':0,'G':0,'C':0})
count_obj.update(x)
if ((min(count_obj.items(), key=itemgetter(1))[1])/len(x)) > 0.05:
ind_counter = ind_counter + 1
q_counter = q_counter + 1
ofile.write(">" + str(y) +"\n" + str(x) + "\n")
else:
continue
ofile.close()
ind_counter = 0
ofile = open(subject_file, "w")
for x,y in collapsed[q_counter:]:
if ind_counter < 201:
count_obj = Counter({'A':0,'T':0,'G':0,'C':0})
count_obj.update(x)
if ((min(count_obj.items(), key=itemgetter(1))[1])/len(x)) > 0.05:
ind_counter = ind_counter + 1
q_counter = q_counter + 1
ofile.write(">" + str(y) +"\n" + str(x) + "\n")
else:
continue
ofile.close()
command = blastn + " -task blastn-short -ungapped -max_hsps 2 -query " + query_file + " -subject " + subject_file + " -outfmt '10 qseqid sseqid qseq length evalue qstart sstart' -out " + blast_file
os.system(command)
csv = pd.read_csv(blast_file)
csv.columns = ['query', 'subject', 'aligned_seq', 'aligned_length', 'evalue', 'qstart', 'sstart']
#csv =csv.loc[csv["aligned_length"] >=15]
adapter = sorted(Counter(csv["aligned_seq"].tolist()).items(), key=operator.itemgetter(1), reverse=True)[0][0][:21]
print("Predicted adapter sequence for filename " + filename + " is " + adapter)
print("Trimming ~" + filename)
newpath = "aux_files/" + filename + "/"
log = newpath + filename + "_bowtie.txt"
log2 = newpath + filename + "_cutadapt.txt"
tsv_file = newpath + filename+ "_sam.tsv"
fastq_filename = "solid-adapter-trimmed/"+ filename + "_trimmed.fastq"
sam = newpath + filename + "_mapped.sam"
if float(os.popen("cutadapt --version").read().strip()) > 1.18:
sys.exit('\nERROR: Cutadapt version should be less than or equal to 1.18. Colorspace reads are supported only in cutadapt version 1.18 or earlier \n')
command = "cutadapt -c --format=sra-fastq -a " + adapter + " -q 20 -m 15 -M50 " + filename + ".fastq 2> " + log2 + " | cutadapt -c -q 20 -m 15 -M50 - > " + fastq_filename + " 2>> "+ log2
print(command)
os.system(command)
infile= open(log2, "r")
lines = infile.readlines()
cut_adapt = []
for line in lines:
if "Reads with adapters" in line:
cut_adapt.append(line.strip().replace(" ", "").split("(")[1].split(")")[0])
if (args.index!=None):
index = args.index
command = bowtie +" --best -C -v 3 -p 20 " + index + " -q " + fastq_filename + " -S 2> " + log + "| samtools view -Sh -F 4 - > " + sam
print(command)
os.system(command)
os.system("rm " + fastq_filename)
os.system("egrep -v '@HD|@SQ|@PG' " + sam + " > " + tsv_file)
tsv = pd.read_csv(tsv_file,sep='\t', header = None, quoting=3)
if len(list(tsv)) == 16:
tsv.columns = ['header', 'flag', 'reference', 'sequence_start', 'MAPQ','CIGAR', 'REf-MATE', 'REF-MATE-POS', 'INSERT-SIZE', 'READ', 'ASCII', 'OPT-1','OPT-2','OPT-3','OPT-4','OPT-5']
else:
tsv.columns = ['header', 'flag', 'reference', 'sequence_start', 'MAPQ','CIGAR', 'REf-MATE', 'REF-MATE-POS', 'INSERT-SIZE', 'READ', 'ASCII', 'OPT-1','OPT-2','OPT-3','OPT-4']
seq = []
ofile = open(fastq_filename, "w")
seq = tsv[['READ', 'ASCII']].apply(tuple, axis=1).tolist()
i = 0
for x,y in seq:
ofile.write(">" + filename + "-" + str(i) +"\n" + str(x) + "\n"+ "+" +"\n"+ str(y)+"\n")
i = i + 1
ofile.close()
infile= open(log, "r")
lines = infile.readlines()
a = float(lines[1].strip().split("(")[1].split("%")[0])
no_reads = lines[0].strip().split("processed: ")[1]
os.system(command)
if (a >=50):
return [filename,"3prime","na",adapter,abund,"na",cut_adapt[0],no_reads,a,"good"]
else:
command = "mv " + path + "/good-mapping/"+ fastq_filename + " " + path + "/bad-mapping/" + fastq_filename
print(command)
os.system(command)
return [filename,"3prime","na",adapter,abund,"na",cut_adapt[0],no_reads,a,"bad"]
else:
return [filename,"3prime","na",adapter,abund,"na",cut_adapt[0],"na","na","na"]
if __name__ == "__main__":
if (args.sequencing_platform == "ILLUMINA"):
worker = worker1
elif (args.sequencing_platform == "454") or (args.sequencing_platform == "ION_TORRENT"):
worker = worker2
elif (args.sequencing_platform == "SOLID"):
if not os.path.exists("q_fastq"):
os.makedirs("q_fastq")
if not os.path.exists("solid-adapter-trimmed"):
os.makedirs("solid-adapter-trimmed")
if (args.index!=None):
os.system("samtools --version > vers.txt")
infile= open("vers.txt", "r")
lines = infile.readlines()
os.system("rm vers.txt")
if lines != []:
ver = lines[0].strip().split("samtools ")[1]
else:
ver = "no"
if (ver=="no"):
sys.exit('\nERROR: SAMtools not found. Please install samtools \n')
os.system("wget https://gist.github.com/pcantalupo/9c30709fe802c96ea2b3/archive/b5a290a3993a4845d3766a018837557bd0f0047b.zip")
os.system("unzip -j b5a290a3993a4845d3766a018837557bd0f0047b.zip 9c30709fe802c96ea2b3-b5a290a3993a4845d3766a018837557bd0f0047b/csfq2fq.pl")
os.system("rm -r b5a290a3993a4845d3766a018837557bd0f0047b.zip")
worker = worker3
else:
sys.exit('\nERROR: Invalid argument. \n%s'%(docstring))
size = {}
for f in files:
size[f] = os.path.getsize(f)
size = sorted(size.items(), key=operator.itemgetter(1))
asan = [k for k, v in size if v >= 10000000000]
nasa = [k for k, v in size if v < 10000000000]
print("Total number of input files = " + str(len(files)) + "\n" + " Number of bigger files (>=10GB) = " + str(len(asan)) + "\n" + " Number of smaller files (<10 GB) = " + str(len(nasa)))
result_list =[]
if (len(nasa) != 0):
cp_count = multiprocessing.cpu_count()
print("number of CPU is " + str(cp_count))
if ((len(nasa)/cp_count) < 2):
pool = multiprocessing.Pool(processes = int(cp_count/2))
print("Processing " + str(len(nasa)) + " files")
result_list.append(pool.map(worker, [f for f in nasa ]))
pool.close()
pool.join()
else:
denom = int(len(nasa)/(cp_count/2))