-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
185 lines (154 loc) · 6.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import torch
import warnings
import argparse
import torchvision
from model import Net
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
def get_correct(y_pred, y_true):
return y_pred.argmax(dim=1).eq(y_true).sum().item()
def train(args, model, train_loader, optimizer, criterion):
model.train()
img, lbl = iter(train_loader).next()
img_grid = torchvision.utils.make_grid(img)
tboard = SummaryWriter()
tboard.add_image('images', img_grid)
for n_epoch in range(args.epochs):
batch_loss = 0.0
total_loss = 0.0
batch_correct = 0
total_correct = 0
for batch_idx, (X, y_true) in enumerate(train_loader):
y_pred = model(X)
loss = criterion(y_pred, y_true) # Calculate loss
optimizer.zero_grad() # Zero parameter gradients
loss.backward() # Calculate gradients
optimizer.step() # Update weights
# print loss
batch_loss += loss.item()
total_loss += loss.item()
batch_correct += get_correct(y_pred, y_true)
total_correct += get_correct(y_pred, y_true)
if batch_idx % args.log_interval == 0:
print('[%d, %5d] Total loss: %.5f, Total Correct: %5d' %
(n_epoch + 1, batch_idx + 1, batch_loss / args.log_interval, batch_correct))
batch_loss = 0.0
batch_correct = 0
tboard.add_scalar('Loss', total_loss, n_epoch)
tboard.add_scalar('Accuracy', total_correct /
len(train_loader.dataset), n_epoch)
tboard.add_histogram('Conv1.bias', model.conv1.bias, n_epoch)
tboard.add_histogram('Conv1.weight', model.conv1.weight, n_epoch)
tboard.add_histogram('Conv1.weight.grad',
model.conv1.weight.grad, n_epoch)
tboard.add_graph(model, img)
tboard.close()
print('Finished Training')
if args.save_model:
torch.save(model.state_dict(),
('CNNModel_' + args.dataset + '.pth'))
def test(model, test_loader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (X, y_true) in enumerate(test_loader):
y_pred = model(X)
total += y_true.size(0)
correct += get_correct(y_pred, y_true)
print('Accuracy of the network on test images: %d %%' % (
100 * correct / total))
def main():
parser = argparse.ArgumentParser(
description='Simple training script for training model')
parser.add_argument(
'--epochs', help='Number of epochs (default: 75)', type=int, default=75)
parser.add_argument(
'--batch-size', help='Batch size of the data (default: 16)', type=int, default=16)
parser.add_argument(
'--learning-rate', help='Learning rate (default: 0.001)', type=float, default=0.001)
parser.add_argument(
'--seed', help='Random seed (default:1)', type=int, default=1)
parser.add_argument(
'--data-path', help='Path for the downloaded dataset (default: ../dataset/)', default='../dataset/')
parser.add_argument(
'--dataset', help='Dataset name. Must be one of MNIST, STL10, CIFAR10')
parser.add_argument(
'--use-cuda', help='CUDA usage (default: False)', type=bool, default=False)
parser.add_argument(
'--weight-decay', help='weight decay (L2 penalty) (default: 1e-5)', type=float, default=1e-5)
parser.add_argument(
'--log-interval', help='No of batches to wait before logging training status (default: 50)', type=int, default=50)
parser.add_argument(
'--save-model', help='For saving the current model (default: True)', type=bool, default=True)
args = parser.parse_args()
batch_size = args.batch_size # batch size
learning_rate = args.learning_rate # learning rate
torch.manual_seed(args.seed) # seed value
# Creating dataset path if it doesn't exist
if args.data_path is None:
raise ValueError('Must provide dataset path')
else:
data_path = args.data_path
if not os.path.isdir(data_path):
os.mkdir(data_path)
# Downloading proper dataset and creating data loader
if args.dataset == 'MNIST':
T = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_data = torchvision.datasets.MNIST(
data_path, train=True, download=True, transform=T)
test_data = torchvision.datasets.MNIST(
data_path, train=False, download=True, transform=T)
elif args.dataset == 'STL10':
T = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_data = torchvision.datasets.STL10(
data_path, split='train', download=True, transform=T)
test_data = torchvision.datasets.STL10(
data_path, split='test', download=True, transform=T)
elif args.dataset == 'CIFAR10':
T = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_data = torchvision.datasets.CIFAR10(
data_path, train=True, download=True, transform=T)
test_data = torchvision.datasets.CIFAR10(
data_path, train=False, download=True, transform=T)
elif args.dataset is None:
raise ValueError('Must provide dataset')
else:
raise ValueError('Dataset name must be MNIST, STL10 or CIFAR10')
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False)
# use CUDA or not
device = 'cpu'
if args.use_cuda is False:
if torch.cuda.is_available():
warnings.warn(
'CUDA is available, please use for faster convergence')
else:
device = 'cpu'
else:
if torch.cuda.is_available():
device = 'cuda'
else:
raise ValueError('CUDA is not available, please set it False')
# Create the model
model = Net(dataset=args.dataset).to(device)
# Train the network
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(
lr=learning_rate, params=model.parameters(), weight_decay=args.weight_decay)
train(args, model, device, train_loader, optimizer, criterion)
# Test the network
test(model, test_loader)
if __name__ == '__main__':
main()