forked from akshaychawla/Optical-Flow-Tracking----OpenCV
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtracking6.py
118 lines (92 loc) · 3.64 KB
/
tracking6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import cv2
import globalVariables as gV
import random
gV.selRoi = 0
gV.top_left= [160,213]
gV.bottom_right = [320,426]
gV.first_time = 1
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
def findDistance(r1,c1,r2,c2):
d = (r1-r2)**2 + (c1-c2)**2
d = d**0.5
return d
#main function
cv2.namedWindow('tracker')
cap = cv2.VideoCapture(0)
while True:
while True:
_,frame = cap.read()
#-----Drawing Stuff on the Image
cv2.putText(frame,'Press a to start tracking',(20,50),cv2.FONT_HERSHEY_SIMPLEX,1,color = (60,100,75),thickness = 3)
cv2.rectangle(frame,(gV.top_left[1],gV.top_left[0]),(gV.bottom_right[1],gV.bottom_right[0]),color = (100,255,100),thickness = 4)
#-----Finding ROI and extracting Corners
frameGray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
roi = frameGray[gV.top_left[0]:gV.bottom_right[0], gV.top_left[1]:gV.bottom_right[1] ] #selecting roi
new_corners = cv2.goodFeaturesToTrack(roi,50,0.01,10) #find corners
#-----converting to complete image coordinates (new_corners)
new_corners[:,0,0] = new_corners[:,0,0] + gV.top_left[1]
new_corners[:,0,1] = new_corners[:,0,1] + gV.top_left[0]
#-----drawing the corners in the original image
for corner in new_corners:
cv2.circle(frame, (int(corner[0][0]),int(corner[0][1])) ,5,(0,255,0))
#-----old_corners and oldFrame is updated
oldFrameGray = frameGray.copy()
old_corners = new_corners.copy()
cv2.imshow('tracker',frame)
a = cv2.waitKey(5)
if a== 27:
cv2.destroyAllWindows()
cap.release()
elif a == 97:
break
#----Actual Tracking-----
while True:
'Now we have oldFrame,we can get new_frame,we have old corners and we can get new corners and update accordingly'
#read new frame and cvt to gray
ret,frame = cap.read()
frameGray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
#finding the new tracked points
new_corners, st, err = cv2.calcOpticalFlowPyrLK(oldFrameGray, frameGray, old_corners, None, **lk_params)
#---pruning far away points:
#first finding centroid
r_add,c_add = 0,0
for corner in new_corners:
r_add = r_add + corner[0][1]
c_add = c_add + corner[0][0]
centroid_row = int(1.0*r_add/len(new_corners))
centroid_col = int(1.0*c_add/len(new_corners))
#draw centroid
cv2.circle(frame,(int(centroid_col),int(centroid_row)),5,(255,0,0))
#add only those corners to new_corners_updated which are at a distance of 30 or lesse
new_corners_updated = new_corners.copy()
tobedel = []
for index in range(len(new_corners)):
if findDistance(new_corners[index][0][1],new_corners[index][0][0],int(centroid_row),int(centroid_col)) > 90:
tobedel.append(index)
new_corners_updated = np.delete(new_corners_updated,tobedel,0)
#drawing the new points
for corner in new_corners_updated:
cv2.circle(frame, (int(corner[0][0]),int(corner[0][1])) ,5,(0,255,0))
if len(new_corners_updated) < 10:
print 'OBJECT LOST, Reinitialize for tracking'
break
#finding the min enclosing circle
ctr , rad = cv2.minEnclosingCircle(new_corners_updated)
cv2.circle(frame, (int(ctr[0]),int(ctr[1])) ,int(rad),(0,0,255),thickness = 5)
#updating old_corners and oldFrameGray
oldFrameGray = frameGray.copy()
old_corners = new_corners_updated.copy()
#showing stuff on video
cv2.putText(frame,'Tracking Integrity : Excellent %04.3f'%random.random(),(20,50),cv2.FONT_HERSHEY_SIMPLEX,1,color = (200,50,75),thickness = 3)
cv2.imshow('tracker',frame)
a = cv2.waitKey(5)
if a== 27:
cv2.destroyAllWindows()
cap.release()
elif a == 97:
break
cv2.destroyAllWindows()