-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpong_atari.py
496 lines (413 loc) · 13.5 KB
/
pong_atari.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as opt
import numpy as np
import gym
#from torch.utils.tensorboard import SummaryWriter
from collections import deque
import random
import os
os.environ.setdefault('PATH', '')
from collections import deque
from gym import spaces
import cv2
cv2.ocl.setUseOpenCL(False)
# helpers
def init_weights(m):
if isinstance(m,nn.Linear):
torch.nn.init.normal_(m.weight,0.,0.1)
class ReplayBuffer:
def __init__(self,size):
self.size = size
self.memory = deque([],maxlen=size)
def push(self, x):
self.memory.append(x)
def sample(self, batch_size):
batch = random.sample(self.memory,batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch))
return state, action, reward, next_state, done
def get_len(self):
return len(self.memory)
class TimeLimit(gym.Wrapper):
def __init__(self, env, max_episode_steps=None):
super(TimeLimit, self).__init__(env)
self._max_episode_steps = max_episode_steps
self._elapsed_steps = 0
def step(self, ac):
observation, reward, done, info = self.env.step(ac)
self._elapsed_steps += 1
if self._elapsed_steps >= self._max_episode_steps:
done = True
info['TimeLimit.truncated'] = True
return observation, reward, done, info
def reset(self, **kwargs):
self._elapsed_steps = 0
return self.env.reset(**kwargs)
class ClipActionsWrapper(gym.Wrapper):
def step(self, action):
import numpy as np
action = np.nan_to_num(action)
action = np.clip(action, self.action_space.low, self.action_space.high)
return self.env.step(action)
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class NoopResetEnv(gym.Wrapper):
def __init__(self, env, noop_max=30):
"""Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.
"""
gym.Wrapper.__init__(self, env)
self.noop_max = noop_max
self.override_num_noops = None
self.noop_action = 0
assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
def reset(self, **kwargs):
""" Do no-op action for a number of steps in [1, noop_max]."""
self.env.reset(**kwargs)
if self.override_num_noops is not None:
noops = self.override_num_noops
else:
noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) #pylint: disable=E1101
assert noops > 0
obs = None
for _ in range(noops):
obs, _, done, _ = self.env.step(self.noop_action)
if done:
obs = self.env.reset(**kwargs)
return obs
def step(self, ac):
return self.env.step(ac)
class FireResetEnv(gym.Wrapper):
def __init__(self, env):
"""Take action on reset for environments that are fixed until firing."""
gym.Wrapper.__init__(self, env)
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
assert len(env.unwrapped.get_action_meanings()) >= 3
def reset(self, **kwargs):
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(1)
if done:
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(2)
if done:
self.env.reset(**kwargs)
return obs
def step(self, ac):
return self.env.step(ac)
class EpisodicLifeEnv(gym.Wrapper):
def __init__(self, env):
"""Make end-of-life == end-of-episode, but only reset on true game over.
Done by DeepMind for the DQN and co. since it helps value estimation.
"""
gym.Wrapper.__init__(self, env)
self.lives = 0
self.was_real_done = True
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.was_real_done = done
# check current lives, make loss of life terminal,
# then update lives to handle bonus lives
lives = self.env.unwrapped.ale.lives()
if lives < self.lives and lives > 0:
# for Qbert sometimes we stay in lives == 0 condition for a few frames
# so it's important to keep lives > 0, so that we only reset once
# the environment advertises done.
done = True
self.lives = lives
return obs, reward, done, info
def reset(self, **kwargs):
"""Reset only when lives are exhausted.
This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes.
"""
if self.was_real_done:
obs = self.env.reset(**kwargs)
else:
# no-op step to advance from terminal/lost life state
obs, _, _, _ = self.env.step(0)
self.lives = self.env.unwrapped.ale.lives()
return obs
class MaxAndSkipEnv(gym.Wrapper):
def __init__(self, env, skip=4):
"""Return only every `skip`-th frame"""
gym.Wrapper.__init__(self, env)
# most recent raw observations (for max pooling across time steps)
self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8)
self._skip = skip
def step(self, action):
"""Repeat action, sum reward, and max over last observations."""
total_reward = 0.0
done = None
for i in range(self._skip):
obs, reward, done, info = self.env.step(action)
if i == self._skip - 2: self._obs_buffer[0] = obs
if i == self._skip - 1: self._obs_buffer[1] = obs
total_reward += reward
if done:
break
# Note that the observation on the done=True frame
# doesn't matter
max_frame = self._obs_buffer.max(axis=0)
return max_frame, total_reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class ClipRewardEnv(gym.RewardWrapper):
def __init__(self, env):
gym.RewardWrapper.__init__(self, env)
def reward(self, reward):
"""Bin reward to {+1, 0, -1} by its sign."""
return np.sign(reward)
class WarpFrame(gym.ObservationWrapper):
def __init__(self, env, width=84, height=84, grayscale=True, dict_space_key=None):
"""
Warp frames to 84x84 as done in the Nature paper and later work.
If the environment uses dictionary observations, `dict_space_key` can be specified which indicates which
observation should be warped.
"""
super().__init__(env)
self._width = width
self._height = height
self._grayscale = grayscale
self._key = dict_space_key
if self._grayscale:
num_colors = 1
else:
num_colors = 3
new_space = gym.spaces.Box(
low=0,
high=255,
shape=(self._height, self._width, num_colors),
dtype=np.uint8,
)
if self._key is None:
original_space = self.observation_space
self.observation_space = new_space
else:
original_space = self.observation_space.spaces[self._key]
self.observation_space.spaces[self._key] = new_space
assert original_space.dtype == np.uint8 and len(original_space.shape) == 3
def observation(self, obs):
if self._key is None:
frame = obs
else:
frame = obs[self._key]
if self._grayscale:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
frame = cv2.resize(
frame, (self._width, self._height), interpolation=cv2.INTER_AREA
)
if self._grayscale:
frame = np.expand_dims(frame, -1)
if self._key is None:
obs = frame
else:
obs = obs.copy()
obs[self._key] = frame
return obs
class FrameStack(gym.Wrapper):
def __init__(self, env, k):
"""Stack k last frames.
Returns lazy array, which is much more memory efficient.
See Also
--------
baselines.common.atari_wrappers.LazyFrames
"""
gym.Wrapper.__init__(self, env)
self.k = k
self.frames = deque([], maxlen=k)
shp = env.observation_space.shape
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=env.observation_space.dtype)
def reset(self):
ob = self.env.reset()
for _ in range(self.k):
self.frames.append(ob)
return self._get_ob()
def step(self, action):
ob, reward, done, info = self.env.step(action)
self.frames.append(ob)
return self._get_ob(), reward, done, info
def _get_ob(self):
assert len(self.frames) == self.k
return LazyFrames(list(self.frames))
class ScaledFloatFrame(gym.ObservationWrapper):
def __init__(self, env):
gym.ObservationWrapper.__init__(self, env)
self.observation_space = gym.spaces.Box(low=0, high=1, shape=env.observation_space.shape, dtype=np.float32)
def observation(self, observation):
# careful! This undoes the memory optimization, use
# with smaller replay buffers only.
return np.array(observation).astype(np.float32) / 255.0
class LazyFrames(object):
def __init__(self, frames):
"""This object ensures that common frames between the observations are only stored once.
It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay
buffers.
This object should only be converted to numpy array before being passed to the model.
You'd not believe how complex the previous solution was."""
self._frames = frames
self._out = None
def _force(self):
if self._out is None:
self._out = np.concatenate(self._frames, axis=-1)
self._frames = None
return self._out
def __array__(self, dtype=None):
out = self._force()
if dtype is not None:
out = out.astype(dtype)
return out
def __len__(self):
return len(self._force())
def __getitem__(self, i):
return self._force()[i]
def count(self):
frames = self._force()
return frames.shape[frames.ndim - 1]
def frame(self, i):
return self._force()[..., i]
def make_atari(env_id, max_episode_steps=None):
env = gym.make(env_id)
assert 'NoFrameskip' in env.spec.id
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=4)
if max_episode_steps is not None:
env = TimeLimit(env, max_episode_steps=max_episode_steps)
return env
def wrap_deepmind(env, episodic_life=True, clip_rewards=True, frame_stack=True, scale=False):
"""Configure environment for DeepMind-style Atari.
"""
if episodic_life:
env = EpisodicLifeEnv(env)
if 'FIRE' in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
env = WarpFrame(env)
if scale:
env = ScaledFloatFrame(env)
if frame_stack:
env = FrameStack(env, 4)
if clip_rewards:
env = ClipRewardEnv(env)
return env
class ImageToPyTorch(gym.ObservationWrapper):
"""
Image shape to num_channels x weight x height
"""
def __init__(self, env):
super(ImageToPyTorch, self).__init__(env)
old_shape = self.observation_space.shape
self.observation_space = gym.spaces.Box(low=0.0, high=1.0, shape=(old_shape[-1], old_shape[0], old_shape[1]), dtype=np.uint8)
def observation(self, observation):
return np.swapaxes(observation, 2, 0)
def wrap_pytorch(env):
return ImageToPyTorch(env)
# Hyperparameters
BATCH_SIZE = 64
LR = 0.01
EPSILON = 0.9
GAMMA = 0.9
TARGET_UPDATE_INTERVAL = 100
TENSORBOARD_LOG = False
#TB_LOG_PATH = './runs/dqn/run2'
REPLAY_BUFFER_CAPACITY = 100
env = make_atari("PongNoFrameskip-v4")
env = wrap_deepmind(env)
env = wrap_pytorch(env)
STATE_DIM = env.observation_space.shape[0]
ACTION_DIM = env.action_space.n
# network definition
class Flatten(torch.nn.Module):
def forward(self, x):
batch_size = x.shape[0]
return x.view(batch_size, -1)
class ConvDQN(nn.Module):
def __init__(self):
super(ConvDQN, self).__init__()
self.c1 = nn.Conv2d(STATE_DIM , 32, kernel_size = 8, stride = 4)
self.c2 = nn.Conv2d(32 , 64, kernel_size = 4, stride = 2)
self.c3 = nn.Conv2d(64 , 64, kernel_size = 3, stride = 1)
self.fc1 = nn.Linear(7*7*64, 512)
self.fc2 = nn.Linear(512, ACTION_DIM)
self.apply(init_weights)
def forward(self,x):
x = F.relu(self.c1(x))
x = F.relu(self.c2(x))
x = F.relu(self.c3(x))
x = Flatten().forward(x)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class DQN(nn.Module):
def __init__(self):
super(DQN,self).__init__()
self.fc1 = nn.Linear(STATE_DIM,50)
self.fc2 = nn.Linear(50,ACTION_DIM)
self.apply(init_weights)
def forward(self,x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class Agent(object):
def __init__(self):
self.dqn, self.target_dqn = ConvDQN(), ConvDQN()
self.learn_step_counter = 0
self.memory_counter = 0
self.replay_buffer = ReplayBuffer(REPLAY_BUFFER_CAPACITY)
self.optimizer = opt.Adam(self.dqn.parameters(),lr=LR)
self.loss_fn = nn.MSELoss()
def get_action(self, s):
s = torch.unsqueeze(torch.FloatTensor(s),0)
if np.random.uniform() < EPSILON:
qs = self.dqn.forward(s)
action = torch.max(qs,1)[1].data.numpy()
action = action[0]
else:
action = env.action_space.sample()
return action
def update_params(self):
# update target network
if self.learn_step_counter % TARGET_UPDATE_INTERVAL == 0:
self.target_dqn.load_state_dict(self.dqn.state_dict())
self.learn_step_counter += 1
# sample batch of transitions
states, actions, rewards, next_states, dones = self.replay_buffer.sample(BATCH_SIZE)
states = torch.FloatTensor(states)
actions = torch.LongTensor(actions.astype(int).reshape((-1,1)))
rewards = torch.FloatTensor(rewards).unsqueeze(1)
next_states = torch.FloatTensor(next_states)
dones = torch.FloatTensor(np.float32(dones)).unsqueeze(1)
# get q values
q_current = self.dqn(states).gather(1,actions)
q_next = self.target_dqn(next_states).detach()
q_target = rewards + GAMMA * q_next.max(1)[0].view(BATCH_SIZE,1)
q_loss = self.loss_fn(q_current,q_target)
# backpropagate
self.optimizer.zero_grad()
q_loss.backward()
self.optimizer.step()
# create agent
agent = Agent()
#if TENSORBOARD_LOG:
# writer = SummaryWriter(TB_LOG_PATH)
print('\nCollecting experience')
for ep in range(400):
state = env.reset()
episode_reward = 0
while True:
env.render()
action = agent.get_action(state)
# take action
next_state, reward_orig, done, _ = env.step(action)
agent.replay_buffer.push((state,action,reward_orig,next_state,done))
agent.memory_counter += 1
episode_reward += reward_orig
if agent.memory_counter > REPLAY_BUFFER_CAPACITY:
agent.update_params()
if done:
print("Episode: {}, Frames: {}, Reward: {}".format(ep,agent.memory_counter,round(episode_reward,2)))
if done:
break
state = next_state
if TENSORBOARD_LOG:
writer.add_scalar('episode_reward',episode_reward,ep)
env.close()