-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
278 lines (239 loc) · 10.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import re
import soundfile as sf
import os
mysp=__import__("my-voice-analysis")
import sys
import librosa
import streamlit as st
import matplotlib.pyplot as plt
import numpy as np
import random
class OutputCatcher:
def __init__(self):
self.last_output = []
def write(self, data: str):
self.last_output.append(data)
if self.last_output.__len__() == 11:
self.last_output.pop(0)
sys.__stdout__.write(data)
def flush(self): # Add the flush method
sys.__stdout__.flush() # Delegate flushing to the original stdout
def resample_audio(y, orig_sr, target_sr=44000):
# Resample the audio to the target sample rate
y_resampled = librosa.resample(y, orig_sr=orig_sr, target_sr=target_sr)
return y_resampled, target_sr
catcher = OutputCatcher()
sys.stdout = catcher
# Configuration
REPO_PATH = r"C:\Users\Arpan Kumar\Downloads\GPTInterviewer-main (3)\GPTInterviewer-main\GPTInterviewer-main\my-voice-analysis" # Replace with the actual path to the repo
AUDIO_FILE = "fullaudio.wav"
AUDIO_FILE_PATH = r"C:\Users\Arpan Kumar\Downloads\GPTInterviewer-main (3)\GPTInterviewer-main\GPTInterviewer-main\temp\fullaudio.wav"
CHUNK_DURATION_SECONDS = 5
MYSP_LIBRARY_PATH = "path/to/mysp/library" # If needed
def split_audio_and_process_chunks(audio_file_path, chunk_duration_seconds, mysp_library_path):
"""Splits audio, saves chunks in tempfiles, and runs mysp.mysptotal on each."""
data, samplerate = sf.read(audio_file_path)
data1 = [x[0] for x in data]
data1, samplerate = resample_audio(np.asarray(data1), samplerate)
data1 = data1.tolist()
# data2 = [x[0] for x in data]
chunk_size = chunk_duration_seconds * samplerate
total_time = len(data1) / samplerate
queue = []
speech_rate = []
pitch = []
posteriori_probability_score = -1
for i in range(0, len(data1), chunk_size):
end_limit = min(i+chunk_size, len(data1)-1)
chunk_data = data1[i:end_limit]
queue.append(chunk_data)
try:
with open(os.path.join(REPO_PATH, "temp.wav"), "w") as temp_file:
sf.write(temp_file.name, chunk_data, samplerate)
file_title = os.path.split(temp_file.name)[-1]
file_title = os.path.splitext(file_title)[0]
file_path = os.path.split(temp_file.name)[:-1]
file_path = os.path.join(*file_path)
mysp.myspsr(file_title, file_path)
last_ten_outputs = catcher.last_output[-10:]
result_idx = last_ten_outputs.index("rate_of_speech=") + 2
result = last_ten_outputs[result_idx]
result = int(result) * 60
speech_rate.append(result)
# print(result)
except ValueError:
speech_rate.append(np.mean(speech_rate) if speech_rate else 0)
for i in range(0, len(data1), chunk_size):
end_limit = min(i+chunk_size, len(data1)-1)
chunk_data = data1[i:end_limit]
with open(os.path.join(REPO_PATH, "temp.wav"), "w") as temp_file:
try:
sf.write(temp_file.name, chunk_data, samplerate)
file_title = os.path.split(temp_file.name)[-1]
file_title = os.path.splitext(file_title)[0]
file_path = os.path.split(temp_file.name)[:-1]
file_path = os.path.join(*file_path)
mysp.myspf0mean(file_title, file_path)
last_ten_outputs = catcher.last_output[-10:]
result_idx = last_ten_outputs.index("f0_mean=") + 2
result = last_ten_outputs[result_idx]
result = float(result)
pitch.append(result)
except ValueError:
pitch.append(np.mean(pitch) if pitch else 0)
with open(os.path.join(REPO_PATH, "temp.wav"), "w") as temp_file:
try:
sf.write(temp_file.name, data1, samplerate)
file_title = os.path.split(temp_file.name)[-1]
file_title = os.path.splitext(file_title)[0]
file_path = os.path.split(temp_file.name)[:-1]
file_path = os.path.join(*file_path)
mysp.mysppron(file_title, file_path)
last_ten_outputs = catcher.last_output[-10:]
print(last_ten_outputs)
for line in last_ten_outputs:
if "Pronunciation_posteriori_probability_score_percentage=" in line:
# Extract the score using a regular expression
match = re.search(r'= :(\d+\.\d+)', line)
if match:
posteriori_probability_score = float(match.group(1))
break # Stop searching once you find the score
else:
print("Score format not recognized")
posteriori_probability_score = -1
break
else: # 'else' clause of the for loop executes if no break occurred
print("Score not found")
posteriori_probability_score = -1
except ValueError:
print("Score not found")
posteriori_probability_score = -1
return speech_rate, pitch, total_time, posteriori_probability_score
def create_range_array(start_value, array_size, step=1):
return [start_value + i * step for i in range(array_size)]
# --- Main Execution ---
speech_rate, pitch, time, posteriori_probability_score = \
split_audio_and_process_chunks(AUDIO_FILE_PATH, CHUNK_DURATION_SECONDS, MYSP_LIBRARY_PATH)
# Streamlit title and layout
st.title("Your Rehearsal Report (Preview)")
col1, col2, col3 = st.columns(3)
filler_words = ["umm", "hmm", "oh"]
sensitive_phrases = []
time_series = [5*i for i in range(10)]
# speech_rate = [random.randint(160, 340) for _ in range(10)]
speech_rate_mean = np.round(np.mean(speech_rate), 2)
speech_rate_std = np.round(np.std(speech_rate), 2)
speech_rate_range = np.max(speech_rate) - np.min(speech_rate)
upper_speech_rate = 360
lower_speech_rate = 180
# pitch = [random.randint(1800, 2300) for _ in range(10)]
pitch_mean = np.round(np.mean(pitch), 2)
pitch_std = np.round(np.std(pitch), 2)
pitch_range = np.max(pitch) - np.min(pitch)
# Summary section (col1)
with col1:
st.header("Summary")
st.markdown("Good job rehearsing! Keep up the hard work.")
st.markdown("")
st.markdown("")
st.header(f"{int(time//60)}:{int(time%60)}")
st.markdown("")
st.caption("Total \ntime spent (in min)")
# st.markdown(f"Pace: {speech_rate_mean} syllables/min")
# Fillers section
st.markdown("")
st.markdown("")
st.markdown("")
st.markdown("")
st.markdown("")
st.markdown("")
# st.markdown("")
st.header("Pronunciation Score")
st.header(f"{posteriori_probability_score:0.2f}%")
# st.caption(f"")
# Learn More buttons
st.button("Learn More")
# Pace and Pitch sections (col2)
with col2:
st.header("Speech Rate")
st.markdown(f"Average: {speech_rate_mean} syllables/min")
st.markdown(f"Variation: ±{speech_rate_std} syllables/min")
st.markdown("")
st.markdown("")
fig, ax = plt.subplots()
ax.plot(create_range_array(1, len(speech_rate)), speech_rate, linewidth=2, color="green")
ax.axhspan(lower_speech_rate, upper_speech_rate, color='#b9feb9', alpha=0.75, lw=0)
ax.set_title("Speech Rate Variation Over Time")
ax.set_xlabel("Time (s)")
ax.set_ylabel("Words per Minute")
ax.set_ylim(
min(min(speech_rate) - .5 * speech_rate_range, lower_speech_rate - .5 * speech_rate_range),
max(max(speech_rate) + .5 * speech_rate_range, upper_speech_rate + .5 * speech_rate_range),
)
st.pyplot(fig)
st.markdown("")
st.markdown("")
st.header("Pace")
if speech_rate_mean >= lower_speech_rate and speech_rate_mean <= upper_speech_rate:
st.success("Your pace is just right! Keep it up!")
elif speech_rate_mean < lower_speech_rate:
st.error("You are speaking too slowly.")
else:
st.error("You need to speak a bit slow to be clear.")
# Pace chart (using Matplotlib)
fig, ax = plt.subplots()
colors = ['#F5F5F5', '#00FF40', 'white']
ax.pie([540 - speech_rate_mean, speech_rate_mean, 540], colors=colors)
ax.add_artist(plt.Circle((0, 0), 0.8, color='white'))
ax.text(0, 0.3, f"{speech_rate_mean:0.1f}",
ha='center', va='center', fontsize=40, fontweight="heavy")
ax.text(0, 0.3, f"\n\n\n\nsyllables/min",
ha='center', va='center', fontsize=10)
# Labels for 0, 180, 360, 540
radius = 1.1 # Radius for placing the labels slightly outside the chart
for angle in [0, 180, 360, 540]:
theta = np.deg2rad(angle) # Convert to radians, offset for start angle
x = - radius * np.cos(theta // 3 + np.deg2rad(5))
y = radius * np.sin(theta // 3 + np.deg2rad(5))
ax.annotate(str(angle), xy=(x, y), va='center', ha='center', fontsize=12)
st.pyplot(fig)
with col3:
st.header("Pitch")
# st.markdown(f"Mean: {pitch_mean} Hz")
# st.markdown(f"Variation: ±{pitch_std} Hz")
st.markdown(f"Low pitch variation will make your audience lose interest. Try increasing the tone\
for your key points")
# Pitch chart (using Matplotlib)
fig, ax = plt.subplots()
ax.plot(create_range_array(1, len(pitch)), pitch, linewidth=2)
ax.axhspan(min(pitch), max(pitch), color='#AFDBF5', alpha=0.75, lw=0)
ax.set_title("Pitch Variation Over Time")
ax.set_xlabel("Time (s)")
ax.set_ylabel("Pitch (Hz)")
ax.set_ylim(
min(pitch) - 1.5 * pitch_range,
max(pitch) + 1.5 * pitch_range,
)
st.pyplot(fig)
# # Sensitive Phrases section
# st.header("Sensitive Phrases")
# if sensitive_phrases == []:
# st.success(
# "No sensitive phrases found. Great job using inclusive speech!",
# icon="✅",
# )
# else:
# st.markdown(
# "Avoid using insensitive language. Don't use words like:"
# )
# all_sensitive_phrases = ""
# for i, phrase in enumerate(sensitive_phrases):
# all_sensitive_phrases += phrase
# if i < len(sensitive_phrases) - 2:
# all_sensitive_phrases += ", "
# if i == len(sensitive_phrases) - 2 and len(sensitive_phrases) >= 2:
# all_sensitive_phrases += " and "
# st.error(all_sensitive_phrases)
# st.button("Learn More", key="last")
# Rehearse Again button
st.button("Rehearse Again")