-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathApplianceModel.py
111 lines (96 loc) · 5.63 KB
/
ApplianceModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# ANTgen -- the AMBAL-based NILM Trace generator
#
# Copyright (C) 2019-2020 Andreas Reinhardt <[email protected]>, TU Clausthal
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import logging
import Tools
import xml.etree.ElementTree as ET
import numpy as np
import random
import os.path
import LoadModelComponents
from bitarray import bitarray
class ApplianceModel:
"""A wrapper for composite appliance models"""
def __init__(self, type, model_dir, num_days):
self.logger = logging.getLogger(__name__)
self.model_folder = model_dir.strip(os.path.sep)
self.appliance_type = type
self.busy = bitarray(num_days * Tools.secs_per_day)
self.busy.setall(False)
self.total_power = np.zeros([1, num_days * Tools.secs_per_day])
# Check if file actually exists
if not os.path.isdir(self.model_folder):
raise ValueError("Configuration folder {} not found. Terminating...".format(model_dir))
p = self.model_folder.rsplit(os.path.sep, 2)
num_models = len([_ for _ in os.listdir(model_dir) if os.path.isfile(os.path.join(model_dir, _))])
self.logger.info("Initialized model for {} (from {}) with {} AMBAL instance{}..."
.format(self.appliance_type, self.model_folder, num_models, 's' if num_models != 1 else ''))
self.pick_another_model()
def pick_another_model(self):
model_file = random.choice(
[x for x in os.listdir(self.model_folder) if os.path.isfile(os.path.join(self.model_folder, x))])
# Parse the file
# self.logger.debug("Initializing a new instance of appliance {} from file '{}'...".format(self.appliance_type, model_file))
tree = ET.parse(os.path.join(self.model_folder, model_file))
# configuration file seems to exist and be valid
self.usual_duration = int(tree.getroot().get('duration'))
if self.appliance_type.lower() != tree.getroot().get('type').lower():
self.logger.warning("Specified appliance type ({}) does not match modeled device ({})".format(self.appliance_type, tree.getroot().get('type')))
self.comps = []
components = tree.getroot().findall('./load')
for c in components:
model_type = c.get('type')
if model_type == 'ON_OFF':
model = LoadModelComponents.OnOffModel().init_from_xml(c)
elif model_type == 'LINEAR':
model = LoadModelComponents.LinearModel().init_from_xml(c)
elif model_type == 'ON_OFF_DECAY':
model = LoadModelComponents.OnOffDecayModel().init_from_xml(c)
elif model_type == 'ON_OFF_GROWTH':
model = LoadModelComponents.OnOffGrowthModel().init_from_xml(c)
elif model_type == 'NOISE':
model = LoadModelComponents.NoiseModel().init_from_xml(c)
else:
self.logger.warning("Unsupported model type '{}'".format(model_type))
continue
self.comps.append(model)
self.logger.debug("Appliance model updated (type {}, {} components, duration {})"
.format(self.appliance_type, len(self.comps), self.usual_duration))
def synthesize(self, offset, duration):
self.logger.debug("Creating synthetic {} consumption of {} samples length".format(self.appliance_type, duration))
this_cycle_power = np.zeros(self.total_power.shape)
entry = this_cycle_power[0]
start_offset = 0
for idx, c in enumerate(self.comps):
end_offset = start_offset + int(round(c.dur * duration)) # scale fraction up to absolute number of samples
synth_len = end_offset - start_offset
# self.logger.debug("Synthesizing {} for {:.2f}% of the time, i.e., {}s (from {}->{})"
# .format(c, 100.0*c.dur, synth_len, start_offset, end_offset))
if synth_len <= 0 or synth_len > 86400:
self.logger.debug("Skipping model component of length {} - probably you are operating a long-lasting model for a shorter time only".format(synth_len))
continue # skip segments shorter than 1 second or longer than one day
#self.logger.debug("Relative duration of component {:02d}/{:02d} ({}) is {:.2f}%, scheduled from {}->{}"
# .format(1+idx, len(self.comps), c.type, 100.0*c.dur, start_offset, end_offset))
entry[offset + start_offset:offset + end_offset] += c.synthesize(synth_len)
start_offset = end_offset
self.total_power += this_cycle_power
self.busy[offset:offset + duration] = True
return this_cycle_power