-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscript.py
executable file
·90 lines (66 loc) · 2.77 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import cv2
import numpy as np
def show_img(img):
cv2.imshow('image', img)
cv2.waitKey(0)
def get_dis_to_line(point, line_pt_1, line_pt_2, img):
line_pt_1.append(0)
line_pt_2.append(0)
point.append(0)
line_vector = np.array(line_pt_2) - np.array(line_pt_1)
perp_line = np.cross(line_vector, [0, 0, 1])
unit_perp_line = perp_line / np.linalg.norm(perp_line)
dis_to_line = np.dot(unit_perp_line, np.array(line_pt_2) - np.array(point))
perp_line_with_dis = unit_perp_line * dis_to_line
cv2.line(img, (point[0], point[1]), (point[0] + int(perp_line_with_dis[0]), point[1] + int(perp_line_with_dis[1])), (255, 0, 0), 2)
return abs(dis_to_line)
def get_grouped_lines(lines):
if not(lines is None):
# Group the nearby lines together (execpecting 3 groups)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
ret, label, grouped_lines = cv2.kmeans(lines, 3,None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
return grouped_lines
else:
print "There were no lines found"
return []
cap = cv2.VideoCapture('./sonar_vid.avi')
while(cap.isOpened()):
ret, raw_img = cap.read()
# Threshold the image
gray_img = cv2.cvtColor(raw_img, cv2.COLOR_BGR2GRAY)
ret, thresh_img = cv2.threshold(gray_img, 30, 255, cv2.THRESH_BINARY)
# Find Hough lines
lines = cv2.HoughLines(thresh_img, 1, np.pi/180, threshold = 30)
# Draw the submarine on the image
sub_pos = (int(len(raw_img[0])/2), len(raw_img) - 20)
cv2.circle(raw_img, sub_pos, 5, (100, 255, 0), -1)
# Draw the lines on the original image and find the distance to the lines from the submarine
dis_to_lines = []
text_pos_counter = 0
for line in lines:
line = line[0]
theta = line[1]
rho = line[0]
print "theta: ", theta, " rho: ", rho
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
length = 2000
x1 = int(x0 + length*(-b))
y1 = int(y0 + length*(a))
x2 = int(x0 - length*(-b))
y2 = int(y0 - length*(a))
cv2.line(raw_img, (x1, y1), (x2, y2), (0, 0, 255), 2)
dis_to_line = get_dis_to_line([sub_pos[0], sub_pos[1]], [x1, y1], [x2, y2], raw_img)
print "dis_to_line: ", dis_to_line
# cv2.putText(raw_img, "Line " + str(text_pos_counter) + " dis: " + str(dis_to_line), (100 , 200 + 100 * text_pos_counter), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255))
text_pos_counter += 1
# cv2.imshow('video',cv2.resize(raw_img, ( int(len(raw_img[0]) * 0.5), int(len(raw_img) * 0.5)) ))
cv2.imshow('video', raw_img)
if cv2.waitKey(1) & 0xFF == ord('q'):
print "Breaking loop"
break
cap.release()
cv2.destroyAllWindows()
print "End of program"