-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcifar.py
179 lines (139 loc) · 5.17 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
mnist tester (train and test accuracy)
date: 9/24
author: arabian9ts
"""
# escape matplotlib error
import matplotlib
matplotlib.use('Agg')
# escape tensorflow warning
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import sys
import tensorflow as tf
import _pickle as pickle
import numpy as np
import datetime
import time
import matplotlib.pyplot as plt
from model.vgg16 import *
from util.util import *
# global variables
DATASET_NUM = 10000
BATCH = 100
EPOCH = 10
images = []
labels = []
def gen_onehot_list(label=0):
"""
generate one-hot label-list based on ans-index
e.g. if ans is 3, return [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
Args: answer-index
Returns: one-hot list
"""
return [1 if l==label else 0 for l in range(0, 10)]
def load_data():
"""
open cifar-dataset
segregate images-data and answers-label to images and labels
"""
with open('dataset/data_batch_1', 'rb') as f:
data = pickle.load(f, encoding='latin-1')
slicer = int(DATASET_NUM*0.8)
train_images = np.array(data['data'][:slicer]) / 255
train_labels = np.array(data['labels'][:slicer])
test_images = np.array(data['data'][slicer:]) / 255
test_labels = np.array(data['labels'][slicer:])
reshaped_train_images = np.array([x.reshape([32, 32, 3]) for x in train_images])
reshaped_train_labels = np.array([gen_onehot_list(i) for i in train_labels])
reshaped_test_images = np.array([x.reshape([32, 32, 3]) for x in test_images])
reshaped_test_labels = np.array([gen_onehot_list(i) for i in test_labels])
return reshaped_train_images, reshaped_train_labels, reshaped_test_images, reshaped_test_labels
def get_next_batch(max_length, length=BATCH, is_training=True):
"""
extract next batch-images
Returns: batch sized BATCH
"""
if is_training:
indicies = np.random.choice(max_length, length)
next_batch = train_images[indicies]
next_labels = train_labels[indicies]
else:
indicies = np.random.choice(max_length, length)
next_batch = test_images[indicies]
next_labels = test_labels[indicies]
return np.array(next_batch), np.array(next_labels)
def test():
"""
do test
"""
images, labels = get_next_batch(max_length=len(test_labels), length=100, is_training=False)
result = sess.run(predict, feed_dict={input: images})
correct = 0
total = 100
for i in range(len(labels)):
pred_max = result[i].argmax()
ans = labels[i].argmax()
if ans == pred_max:
correct += 1
print('Accuracy: '+str(correct)+' / '+str(total)+' = '+str(correct/total))
with tf.Session() as sess:
"""
TensorFlow session
"""
args = sys.argv
# use VGG16 network
vgg = VGG16()
# params for converting to answer-label-size
w = tf.Variable(tf.truncated_normal([512, 10], 0.0, 1.0) * 0.01, name='w_last')
b = tf.Variable(tf.truncated_normal([10], 0.0, 1.0) * 0.01, name='b_last')
# input image's placeholder and output of VGG16
input = tf.placeholder(shape=[None, 32, 32, 3], dtype=tf.float32)
fmap = vgg.build(input, is_training=True)
predict = tf.nn.softmax(tf.add(tf.matmul(fmap, w), b))
# params for defining Loss-func and Training-step
ans = tf.placeholder(shape=None, dtype=tf.float32)
ans = tf.squeeze(tf.cast(ans, tf.float32))
# cross-entropy
loss = tf.reduce_mean(-tf.reduce_sum(ans * tf.log(predict), reduction_indices=[1]))
optimizer = tf.train.GradientDescentOptimizer(0.05)
train_step = optimizer.minimize(loss)
sess.run(tf.global_variables_initializer())
# load image data
train_images, train_labels, test_images, test_labels = load_data()
### restoring saved parameters ###
if 2 == len(args) and 'eval' == args[1]:
# parameter saver
saver = tf.train.Saver()
saver.restore(sess, './params.ckpt')
test()
sys.exit()
# ========= Loading END ======== #
print('\nSTART LEARNING')
print('==================== '+str(datetime.datetime.now())+' ====================')
# Training-loop
lossbox = []
for e in range(EPOCH):
for b in range(int(DATASET_NUM/BATCH)):
batch, actuals = get_next_batch(len(train_labels))
sess.run(train_step, feed_dict={input: batch, ans: actuals})
print('Batch: %3d' % int(b+1)+', \tLoss: '+str(sess.run(loss, feed_dict={input: batch, ans: actuals})))
if (b+1) % 100 == 0:
print('============================================')
print('START TEST')
test()
print('END TEST')
print('============================================')
time.sleep(0)
lossbox.append(sess.run(loss, feed_dict={input: batch, ans: actuals}))
print('========== Epoch: '+str(e+1)+' END ==========')
print('==================== '+str(datetime.datetime.now())+' ====================')
print('\nEND LEARNING')
# parameter saver
saver = tf.train.Saver()
saver.save(sess, './params.ckpt')
# plot
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.plot(np.array(range(EPOCH)), lossbox)
plt.show()