diff --git a/Cargo.lock b/Cargo.lock index 5210e12afff5b1..35a89cba16ee2e 100644 --- a/Cargo.lock +++ b/Cargo.lock @@ -7534,7 +7534,9 @@ dependencies = [ name = "solana-unified-scheduler-logic" version = "2.0.0" dependencies = [ + "assert_matches", "solana-sdk", + "static_assertions", ] [[package]] @@ -7543,6 +7545,7 @@ version = "2.0.0" dependencies = [ "assert_matches", "crossbeam-channel", + "dashmap", "derivative", "log", "solana-ledger", diff --git a/ci/test-miri.sh b/ci/test-miri.sh index 407d48c34106a2..3163ba500e2290 100755 --- a/ci/test-miri.sh +++ b/ci/test-miri.sh @@ -2,7 +2,16 @@ set -eo pipefail +source ci/_ source ci/rust-version.sh nightly # miri is very slow; so only run very few of selective tests! -cargo "+${rust_nightly}" miri test -p solana-program -- hash:: account_info:: +_ cargo "+${rust_nightly}" miri test -p solana-program -- hash:: account_info:: + +_ cargo "+${rust_nightly}" miri test -p solana-unified-scheduler-logic + +# run intentionally-#[ignored] ub triggering tests for each to make sure they fail +(! _ cargo "+${rust_nightly}" miri test -p solana-unified-scheduler-logic -- \ + --ignored --exact "utils::tests::test_ub_illegally_created_multiple_tokens") +(! _ cargo "+${rust_nightly}" miri test -p solana-unified-scheduler-logic -- \ + --ignored --exact "utils::tests::test_ub_illegally_shared_token_cell") diff --git a/programs/sbf/Cargo.lock b/programs/sbf/Cargo.lock index b7f5890f442362..9b17367a1a6292 100644 --- a/programs/sbf/Cargo.lock +++ b/programs/sbf/Cargo.lock @@ -6511,7 +6511,9 @@ dependencies = [ name = "solana-unified-scheduler-logic" version = "2.0.0" dependencies = [ + "assert_matches", "solana-sdk", + "static_assertions", ] [[package]] @@ -6520,6 +6522,7 @@ version = "2.0.0" dependencies = [ "assert_matches", "crossbeam-channel", + "dashmap", "derivative", "log", "solana-ledger", diff --git a/runtime/src/bank.rs b/runtime/src/bank.rs index da92443ae4fda5..763b5a73df369e 100644 --- a/runtime/src/bank.rs +++ b/runtime/src/bank.rs @@ -3562,6 +3562,9 @@ impl Bank { transaction: &'a SanitizedTransaction, ) -> TransactionBatch<'_, '_> { let tx_account_lock_limit = self.get_transaction_account_lock_limit(); + // Note that switching this to .get_account_locks_unchecked() is unacceptable currently. + // The unified scheduler relies on the checks enforced here. + // See a comment in SchedulingStateMachine::create_task(). let lock_result = transaction .get_account_locks(tx_account_lock_limit) .map(|_| ()); diff --git a/unified-scheduler-logic/Cargo.toml b/unified-scheduler-logic/Cargo.toml index b2e80c79c7a08f..b05cec41a7c862 100644 --- a/unified-scheduler-logic/Cargo.toml +++ b/unified-scheduler-logic/Cargo.toml @@ -10,4 +10,6 @@ license = { workspace = true } edition = { workspace = true } [dependencies] +assert_matches = { workspace = true } solana-sdk = { workspace = true } +static_assertions = { workspace = true } diff --git a/unified-scheduler-logic/src/lib.rs b/unified-scheduler-logic/src/lib.rs index 997c6c1745a7c9..2bae4f603582f5 100644 --- a/unified-scheduler-logic/src/lib.rs +++ b/unified-scheduler-logic/src/lib.rs @@ -1,15 +1,428 @@ -use solana_sdk::transaction::SanitizedTransaction; +#![allow(rustdoc::private_intra_doc_links)] +//! The task (transaction) scheduling code for the unified scheduler +//! +//! ### High-level API and design +//! +//! The most important type is [`SchedulingStateMachine`]. It takes new tasks (= transactions) and +//! may return back them if runnable via +//! [`::schedule_task()`](SchedulingStateMachine::schedule_task) while maintaining the account +//! readonly/writable lock rules. Those returned runnable tasks are guaranteed to be safe to +//! execute in parallel. Lastly, `SchedulingStateMachine` should be notified about the completion +//! of the exeuction via [`::deschedule_task()`](SchedulingStateMachine::deschedule_task), so that +//! conflicting tasks can be returned from +//! [`::schedule_next_unblocked_task()`](SchedulingStateMachine::schedule_next_unblocked_task) as +//! newly-unblocked runnable ones. +//! +//! The design principle of this crate (`solana-unified-scheduler-logic`) is simplicity for the +//! separation of concern. It is interacted only with a few of its public API by +//! `solana-unified-scheduler-pool`. This crate doesn't know about banks, slots, solana-runtime, +//! threads, crossbeam-channel at all. Becasue of this, it's deterministic, easy-to-unit-test, and +//! its perf footprint is well understood. It really focuses on its single job: sorting +//! transactions in executable order. +//! +//! ### Algorithm +//! +//! The algorithm can be said it's based on per-address FIFO queues, which are updated every time +//! both new task is coming (= called _scheduling_) and runnable (= _post-scheduling_) task is +//! finished (= called _descheduling_). +//! +//! For the _non-conflicting scheduling_ case, the story is very simple; it just remembers that all +//! of accessed addresses are write-locked or read-locked with the number of active (= +//! _currently-scheduled-and-not-descheduled-yet_) tasks. Correspondingly, descheduling does the +//! opposite book-keeping process, regardless whether a finished task has been conflicted or not. +//! +//! For the _conflicting scheduling_ case, it remembers that each of **non-conflicting addresses** +//! like the non-conflicting case above. As for **conflicting addresses**, each task is recorded to +//! respective FIFO queues attached to the (conflicting) addresses. Importantly, the number of +//! conflicting addresses of the conflicting task is also remembered. +//! +//! The last missing piece is that the scheduler actually tries to reschedule previously blocked +//! tasks while deschduling, in addition to the above-mentioned book-keeping processing. Namely, +//! when given address is ready for new fresh locking resulted from descheduling a task (i.e. write +//! lock is released or read lock count has reached zero), it pops out the first element of the +//! FIFO blocked-task queue of the address. Then, it immediately marks the address as relocked. It +//! also decrements the number of conflicting addresses of the popped-out task. As the final step, +//! if the number reaches to the zero, it means the task has fully finished locking all of its +//! addresses and is directly routed to be runnable. Lastly, if the next first element of the +//! blocked-task queue is trying to read-lock the address like the popped-out one, this +//! rescheduling is repeated as an optimization to increase parallelism of task execution. +//! +//! Put differently, this algorithm tries to gradually lock all of addresses of tasks at different +//! timings while not deviating the execution order from the original task ingestion order. This +//! implies there's no locking retries in general, which is the primary source of non-linear perf. +//! degration. +//! +//! As a ballpark number from a synthesized micro benchmark on usual CPU for `mainnet-beta` +//! validators, it takes roughly 100ns to schedule and deschedule a transaction with 10 accounts. +//! And 1us for a transaction with 100 accounts. Note that this excludes crossbeam communication +//! overhead at all. That's said, it's not unrealistic to say the whole unified scheduler can +//! attain 100k-1m tps overall, assuming those transaction executions aren't bottlenecked. +//! +//! ### Runtime performance characteristics and data structure arrangement +//! +//! Its algorithm is very fast for high throughput, real-time for low latency. The whole +//! unified-scheduler architecture is designed from grounds up to support the fastest execution of +//! this scheduling code. For that end, unified scheduler pre-loads address-specific locking state +//! data structures (called [`UsageQueue`]) for all of transaction's accounts, in order to offload +//! the job to other threads from the scheduler thread. This preloading is done inside +//! [`create_task()`](SchedulingStateMachine::create_task). In this way, task scheduling +//! computational complexity is basically reduced to several word-sized loads and stores in the +//! schduler thread (i.e. constant; no allocations nor syscalls), while being proportional to the +//! number of addresses in a given transaction. Note that this statement is held true, regardless +//! of conflicts. This is because the preloading also pre-allocates some scratch-pad area +//! ([`blocked_usages_from_tasks`](UsageQueueInner::blocked_usages_from_tasks)) to stash blocked +//! ones. So, a conflict only incurs some additional fixed number of mem stores, within error +//! margin of the constant complexity. And additional memory allocation for the scratchpad could +//! said to be amortized, if such an unusual event should occur. +//! +//! [`Arc`] is used to implement this preloading mechanism, because `UsageQueue`s are shared across +//! tasks accessing the same account, and among threads due to the preloading. Also, interior +//! mutability is needed. However, `SchedulingStateMachine` doesn't use conventional locks like +//! RwLock. Leveraging the fact it's the only state-mutating exclusive thread, it instead uses +//! `UnsafeCell`, which is sugar-coated by a tailored wrapper called [`TokenCell`]. `TokenCell` +//! imposes an overly restrictive aliasing rule via rust type system to maintain the memory safety. +//! By localizing any synchronization to the message passing, the scheduling code itself attains +//! maximally possible single-threaed execution without stalling cpu pipelines at all, only +//! constrained to mem access latency, while efficiently utilizing L1-L3 cpu cache with full of +//! `UsageQueue`s. +//! +//! ### Buffer bloat insignificance +//! +//! The scheduler code itself doesn't care about the buffer bloat problem, which can occur in +//! unified scheduler, where a run of heavily linearized and blocked tasks could be severely +//! hampered by very large number of interleaved runnable tasks along side. The reason is again +//! for separation of concerns. This is acceptable because the scheduling code itself isn't +//! susceptible to the buffer bloat problem by itself as explained by the description and validated +//! by the mentioned benchmark above. Thus, this should be solved elsewhere, specifically at the +//! scheduler pool. +use { + crate::utils::{ShortCounter, Token, TokenCell}, + assert_matches::assert_matches, + solana_sdk::{pubkey::Pubkey, transaction::SanitizedTransaction}, + static_assertions::const_assert_eq, + std::{collections::VecDeque, mem, sync::Arc}, +}; -pub struct Task { +/// Internal utilities. Namely this contains [`ShortCounter`] and [`TokenCell`]. +mod utils { + use std::{ + any::{self, TypeId}, + cell::{RefCell, UnsafeCell}, + collections::BTreeSet, + marker::PhantomData, + thread, + }; + + /// A really tiny counter to hide `.checked_{add,sub}` all over the place. + /// + /// It's caller's reponsibility to ensure this (backed by [`u32`]) never overflow. + #[derive(Debug, Clone, Copy)] + pub(super) struct ShortCounter(u32); + + impl ShortCounter { + pub(super) fn zero() -> Self { + Self(0) + } + + pub(super) fn one() -> Self { + Self(1) + } + + pub(super) fn is_one(&self) -> bool { + self.0 == 1 + } + + pub(super) fn is_zero(&self) -> bool { + self.0 == 0 + } + + pub(super) fn current(&self) -> u32 { + self.0 + } + + #[must_use] + pub(super) fn increment(self) -> Self { + Self(self.0.checked_add(1).unwrap()) + } + + #[must_use] + pub(super) fn decrement(self) -> Self { + Self(self.0.checked_sub(1).unwrap()) + } + + pub(super) fn increment_self(&mut self) -> &mut Self { + *self = self.increment(); + self + } + + pub(super) fn decrement_self(&mut self) -> &mut Self { + *self = self.decrement(); + self + } + + pub(super) fn reset_to_zero(&mut self) -> &mut Self { + self.0 = 0; + self + } + } + + /// A conditionally [`Send`]-able and [`Sync`]-able cell leveraging scheduler's one-by-one data + /// access pattern with zero runtime synchronization cost. + /// + /// To comply with Rust's aliasing rules, these cells require a carefully-created [`Token`] to + /// be passed around to access the inner values. The token is a special-purpose phantom object + /// to get rid of its inherent `unsafe`-ness in [`UnsafeCell`], which is internally used for + /// the interior mutability. + /// + /// The final objective of [`Token`] is to ensure there's only one mutable reference to the + /// [`TokenCell`] at most _at any given moment_. To that end, it's `unsafe` to create it, + /// shifting the responsibility of binding the only singleton instance to a particular thread + /// and not creating more than one, onto the API consumers. And its constructor is non-`const`, + /// and the type is `!Clone` (and `!Copy` as well), `!Default`, `!Send` and `!Sync` to make it + /// relatively hard to cross thread boundaries accidentally. + /// + /// In other words, the token semantically _owns_ all of its associated instances of + /// [`TokenCell`]s. And `&mut Token` is needed to access one of them as if the one is of + /// [`Token`]'s `*_mut()` getters. Thus, the Rust aliasing rule for `UnsafeCell` can + /// transitively be proven to be satisfied simply based on the usual borrow checking of the + /// `&mut` reference of [`Token`] itself via + /// [`::with_borrow_mut()`](TokenCell::with_borrow_mut). + /// + /// By extension, it's allowed to create _multiple_ tokens in a _single_ process as long as no + /// instance of [`TokenCell`] is shared by multiple instances of [`Token`]. + /// + /// Note that this is overly restrictive in that it's forbidden, yet, technically possible + /// to _have multiple mutable references to the inner values at the same time, if and only + /// if the respective cells aren't aliased to each other (i.e. different instances)_. This + /// artificial restriction is acceptable for its intended use by the unified scheduler's code + /// because its algorithm only needs to access each instance of [`TokenCell`]-ed data once at a + /// time. Finally, this restriction is traded off for restoration of Rust aliasing rule at zero + /// runtime cost. Without this token mechanism, there's no way to realize this. + #[derive(Debug, Default)] + pub(super) struct TokenCell(UnsafeCell); + + impl TokenCell { + /// Creates a new `TokenCell` with the `value` typed as `V`. + /// + /// Note that this isn't parametric over the its accompanied `Token`'s lifetime to avoid + /// complex handling of non-`'static` heaped data in general. Instead, it's manually + /// required to ensure this instance is accessed only via its associated Token for the + /// entire lifetime. + /// + /// This is intentionally left to be non-`const` to forbid unprotected sharing via static + /// variables among threads. + pub(super) fn new(value: V) -> Self { + Self(UnsafeCell::new(value)) + } + + /// Acquires a mutable reference inside a given closure, while borrowing the mutable + /// reference of the given token. + /// + /// In this way, any additional reborrow can never happen at the same time across all + /// instances of [`TokenCell`] conceptually owned by the instance of [`Token`] (a + /// particular thread), unless previous borrow is released. After the release, the used + /// singleton token should be free to be reused for reborrows. + /// + /// Note that lifetime of the acquired reference is still restricted to 'self, not + /// 'token, in order to avoid use-after-free undefined behaviors. + pub(super) fn with_borrow_mut( + &self, + _token: &mut Token, + f: impl FnOnce(&mut V) -> R, + ) -> R { + f(unsafe { &mut *self.0.get() }) + } + } + + // Safety: Once after a (`Send`-able) `TokenCell` is transferred to a thread from other + // threads, access to `TokenCell` is assumed to be only from the single thread by proper use of + // Token. Thereby, implementing `Sync` can be thought as safe and doing so is needed for the + // particular implementation pattern in the unified scheduler (multi-threaded off-loading). + // + // In other words, TokenCell is technically still `!Sync`. But there should be no + // legalized usage which depends on real `Sync` to avoid undefined behaviors. + unsafe impl Sync for TokenCell {} + + /// A auxiliary zero-sized type to enforce aliasing rule to [`TokenCell`] via rust type system + /// + /// Token semantically owns a collection of `TokenCell` objects and governs the _unique_ + /// existence of mutable access over them by requiring the token itself to be mutably borrowed + /// to get a mutable reference to the internal value of `TokenCell`. + // *mut is used to make this type !Send and !Sync + pub(super) struct Token(PhantomData<*mut V>); + + impl Token { + /// Returns the token to acquire a mutable reference to the inner value of [TokenCell]. + /// + /// This is intentionally left to be non-`const` to forbid unprotected sharing via static + /// variables among threads. + /// + /// # Panics + /// + /// This function will `panic!()` if called multiple times with same type `V` from the same + /// thread to detect potential misuses. + /// + /// # Safety + /// + /// This method should be called exactly once for each thread at most to avoid undefined + /// behavior when used with [`Token`]. + #[must_use] + pub(super) unsafe fn assume_exclusive_mutating_thread() -> Self { + thread_local! { + static TOKENS: RefCell> = const { RefCell::new(BTreeSet::new()) }; + } + // TOKEN.with_borrow_mut can't panic because it's the only non-overlapping + // bound-to-local-variable borrow of the _thread local_ variable. + assert!( + TOKENS.with_borrow_mut(|tokens| tokens.insert(TypeId::of::())), + "{:?} is wrongly initialized twice on {:?}", + any::type_name::(), + thread::current() + ); + + Self(PhantomData) + } + } + + #[cfg(test)] + mod tests { + use { + super::{Token, TokenCell}, + std::{mem, sync::Arc, thread}, + }; + + #[test] + #[should_panic( + expected = "\"solana_unified_scheduler_logic::utils::Token\" is wrongly \ + initialized twice on Thread" + )] + fn test_second_creation_of_tokens_in_a_thread() { + unsafe { + let _ = Token::::assume_exclusive_mutating_thread(); + let _ = Token::::assume_exclusive_mutating_thread(); + } + } + + #[derive(Debug)] + struct FakeQueue { + v: Vec, + } + + // As documented above, it's illegal to create multiple tokens inside a single thread to + // acquire multiple mutable references to the same TokenCell at the same time. + #[test] + // Trigger (harmless) UB unless running under miri by conditionally #[ignore]-ing, + // confirming false-positive result to conversely show the merit of miri! + #[cfg_attr(miri, ignore)] + fn test_ub_illegally_created_multiple_tokens() { + // Unauthorized token minting! + let mut token1 = unsafe { mem::transmute(()) }; + let mut token2 = unsafe { mem::transmute(()) }; + + let queue = TokenCell::new(FakeQueue { + v: Vec::with_capacity(20), + }); + queue.with_borrow_mut(&mut token1, |queue_mut1| { + queue_mut1.v.push(1); + queue.with_borrow_mut(&mut token2, |queue_mut2| { + queue_mut2.v.push(2); + queue_mut1.v.push(3); + }); + queue_mut1.v.push(4); + }); + + // It's in ub already, so we can't assert reliably, so dbg!(...) just for fun + #[cfg(not(miri))] + dbg!(queue.0.into_inner()); + + // Return successfully to indicate an unexpected outcome, because this test should + // have aborted by now. + } + + // As documented above, it's illegal to share (= co-own) the same instance of TokenCell + // across threads. Unfortunately, we can't prevent this from happening with some + // type-safety magic to cause compile errors... So sanity-check here test fails due to a + // runtime error of the known UB, when run under miri. + #[test] + // Trigger (harmless) UB unless running under miri by conditionally #[ignore]-ing, + // confirming false-positive result to conversely show the merit of miri! + #[cfg_attr(miri, ignore)] + fn test_ub_illegally_shared_token_cell() { + let queue1 = Arc::new(TokenCell::new(FakeQueue { + v: Vec::with_capacity(20), + })); + let queue2 = queue1.clone(); + #[cfg(not(miri))] + let queue3 = queue1.clone(); + + // Usually miri immediately detects the data race; but just repeat enough time to avoid + // being flaky + for _ in 0..10 { + let (queue1, queue2) = (queue1.clone(), queue2.clone()); + let thread1 = thread::spawn(move || { + let mut token = unsafe { Token::assume_exclusive_mutating_thread() }; + queue1.with_borrow_mut(&mut token, |queue| { + // this is UB + queue.v.push(3); + }); + }); + // Immediately spawn next thread without joining thread1 to ensure there's a data race + // definitely. Otherwise, joining here wouldn't cause UB. + let thread2 = thread::spawn(move || { + let mut token = unsafe { Token::assume_exclusive_mutating_thread() }; + queue2.with_borrow_mut(&mut token, |queue| { + // this is UB + queue.v.push(4); + }); + }); + + thread1.join().unwrap(); + thread2.join().unwrap(); + } + + // It's in ub already, so we can't assert reliably, so dbg!(...) just for fun + #[cfg(not(miri))] + { + drop((queue1, queue2)); + dbg!(Arc::into_inner(queue3).unwrap().0.into_inner()); + } + + // Return successfully to indicate an unexpected outcome, because this test should + // have aborted by now + } + } +} + +/// [`Result`] for locking a [usage_queue](UsageQueue) with particular +/// [current_usage](RequestedUsage). +type LockResult = Result<(), ()>; +const_assert_eq!(mem::size_of::(), 1); + +/// Something to be scheduled; usually a wrapper of [`SanitizedTransaction`]. +pub type Task = Arc; +const_assert_eq!(mem::size_of::(), 8); + +/// [`Token`] for [`UsageQueue`]. +type UsageQueueToken = Token; +const_assert_eq!(mem::size_of::(), 0); + +/// [`Token`] for [task](Task)'s [internal mutable data](`TaskInner::blocked_usage_count`). +type BlockedUsageCountToken = Token; +const_assert_eq!(mem::size_of::(), 0); + +/// Internal scheduling data about a particular task. +#[derive(Debug)] +pub struct TaskInner { transaction: SanitizedTransaction, + /// The index of a transaction in ledger entries; not used by SchedulingStateMachine by itself. + /// Carrying this along with the transaction is needed to properly record the execution result + /// of it. index: usize, + lock_contexts: Vec, + blocked_usage_count: TokenCell, } -impl Task { - pub fn create_task(transaction: SanitizedTransaction, index: usize) -> Self { - Task { transaction, index } - } - +impl TaskInner { pub fn task_index(&self) -> usize { self.index } @@ -17,4 +430,971 @@ impl Task { pub fn transaction(&self) -> &SanitizedTransaction { &self.transaction } + + fn lock_contexts(&self) -> &[LockContext] { + &self.lock_contexts + } + + fn set_blocked_usage_count(&self, token: &mut BlockedUsageCountToken, count: ShortCounter) { + self.blocked_usage_count + .with_borrow_mut(token, |usage_count| { + *usage_count = count; + }) + } + + #[must_use] + fn try_unblock(self: Task, token: &mut BlockedUsageCountToken) -> Option { + let did_unblock = self + .blocked_usage_count + .with_borrow_mut(token, |usage_count| usage_count.decrement_self().is_zero()); + did_unblock.then_some(self) + } +} + +/// [`Task`]'s per-address context to lock a [usage_queue](UsageQueue) with [certain kind of +/// request](RequestedUsage). +#[derive(Debug)] +struct LockContext { + usage_queue: UsageQueue, + requested_usage: RequestedUsage, +} +const_assert_eq!(mem::size_of::(), 16); + +impl LockContext { + fn new(usage_queue: UsageQueue, requested_usage: RequestedUsage) -> Self { + Self { + usage_queue, + requested_usage, + } + } + + fn with_usage_queue_mut( + &self, + usage_queue_token: &mut UsageQueueToken, + f: impl FnOnce(&mut UsageQueueInner) -> R, + ) -> R { + self.usage_queue.0.with_borrow_mut(usage_queue_token, f) + } +} + +/// Status about how the [`UsageQueue`] is used currently. +#[derive(Copy, Clone, Debug)] +enum Usage { + Readonly(ShortCounter), + Writable, +} +const_assert_eq!(mem::size_of::(), 8); + +impl From for Usage { + fn from(requested_usage: RequestedUsage) -> Self { + match requested_usage { + RequestedUsage::Readonly => Usage::Readonly(ShortCounter::one()), + RequestedUsage::Writable => Usage::Writable, + } + } +} + +/// Status about how a task is requesting to use a particular [`UsageQueue`]. +#[derive(Clone, Copy, Debug)] +enum RequestedUsage { + Readonly, + Writable, +} + +/// Internal scheduling data about a particular address. +/// +/// Specifically, it holds the current [`Usage`] (or no usage with [`Usage::Unused`]) and which +/// [`Task`]s are blocked to be executed after the current task is notified to be finished via +/// [`::deschedule_task`](`SchedulingStateMachine::deschedule_task`) +#[derive(Debug)] +struct UsageQueueInner { + current_usage: Option, + blocked_usages_from_tasks: VecDeque, +} + +type UsageFromTask = (RequestedUsage, Task); + +impl Default for UsageQueueInner { + fn default() -> Self { + Self { + current_usage: None, + // Capacity should be configurable to create with large capacity like 1024 inside the + // (multi-threaded) closures passed to create_task(). In this way, reallocs can be + // avoided happening in the scheduler thread. Also, this configurability is desired for + // unified-scheduler-logic's motto: separation of concerns (the pure logic should be + // sufficiently distanced from any some random knob's constants needed for messy + // reality for author's personal preference...). + // + // Note that large cap should be accompanied with proper scheduler cleaning after use, + // which should be handled by higher layers (i.e. scheduler pool). + blocked_usages_from_tasks: VecDeque::with_capacity(128), + } + } +} + +impl UsageQueueInner { + fn try_lock(&mut self, requested_usage: RequestedUsage) -> LockResult { + match self.current_usage { + None => Some(Usage::from(requested_usage)), + Some(Usage::Readonly(count)) => match requested_usage { + RequestedUsage::Readonly => Some(Usage::Readonly(count.increment())), + RequestedUsage::Writable => None, + }, + Some(Usage::Writable) => None, + } + .inspect(|&new_usage| { + self.current_usage = Some(new_usage); + }) + .map(|_| ()) + .ok_or(()) + } + + #[must_use] + fn unlock(&mut self, requested_usage: RequestedUsage) -> Option { + let mut is_unused_now = false; + match &mut self.current_usage { + Some(Usage::Readonly(ref mut count)) => match requested_usage { + RequestedUsage::Readonly => { + if count.is_one() { + is_unused_now = true; + } else { + count.decrement_self(); + } + } + RequestedUsage::Writable => unreachable!(), + }, + Some(Usage::Writable) => match requested_usage { + RequestedUsage::Writable => { + is_unused_now = true; + } + RequestedUsage::Readonly => unreachable!(), + }, + None => unreachable!(), + } + + if is_unused_now { + self.current_usage = None; + self.blocked_usages_from_tasks.pop_front() + } else { + None + } + } + + fn push_blocked_usage_from_task(&mut self, usage_from_task: UsageFromTask) { + assert_matches!(self.current_usage, Some(_)); + self.blocked_usages_from_tasks.push_back(usage_from_task); + } + + #[must_use] + fn pop_unblocked_readonly_usage_from_task(&mut self) -> Option { + if matches!( + self.blocked_usages_from_tasks.front(), + Some((RequestedUsage::Readonly, _)) + ) { + assert_matches!(self.current_usage, Some(Usage::Readonly(_))); + self.blocked_usages_from_tasks.pop_front() + } else { + None + } + } + + fn has_no_blocked_usage(&self) -> bool { + self.blocked_usages_from_tasks.is_empty() + } +} + +const_assert_eq!(mem::size_of::>(), 40); + +/// Scheduler's internal data for each address ([`Pubkey`](`solana_sdk::pubkey::Pubkey`)). Very +/// opaque wrapper type; no methods just with [`::clone()`](Clone::clone) and +/// [`::default()`](Default::default). +#[derive(Debug, Clone, Default)] +pub struct UsageQueue(Arc>); +const_assert_eq!(mem::size_of::(), 8); + +/// A high-level `struct`, managing the overall scheduling of [tasks](Task), to be used by +/// `solana-unified-scheduler-pool`. +pub struct SchedulingStateMachine { + unblocked_task_queue: VecDeque, + active_task_count: ShortCounter, + handled_task_count: ShortCounter, + unblocked_task_count: ShortCounter, + total_task_count: ShortCounter, + count_token: BlockedUsageCountToken, + usage_queue_token: UsageQueueToken, +} +const_assert_eq!(mem::size_of::(), 48); + +impl SchedulingStateMachine { + pub fn has_no_active_task(&self) -> bool { + self.active_task_count.is_zero() + } + + pub fn has_unblocked_task(&self) -> bool { + !self.unblocked_task_queue.is_empty() + } + + pub fn unblocked_task_queue_count(&self) -> usize { + self.unblocked_task_queue.len() + } + + pub fn active_task_count(&self) -> u32 { + self.active_task_count.current() + } + + pub fn handled_task_count(&self) -> u32 { + self.handled_task_count.current() + } + + pub fn unblocked_task_count(&self) -> u32 { + self.unblocked_task_count.current() + } + + pub fn total_task_count(&self) -> u32 { + self.total_task_count.current() + } + + /// Schedules given `task`, returning it if successful. + /// + /// Returns `Some(task)` if it's immediately scheduled. Otherwise, returns `None`, + /// indicating the scheduled task is blocked currently. + /// + /// Note that this function takes ownership of the task to allow for future optimizations. + #[must_use] + pub fn schedule_task(&mut self, task: Task) -> Option { + self.total_task_count.increment_self(); + self.active_task_count.increment_self(); + self.try_lock_usage_queues(task) + } + + #[must_use] + pub fn schedule_next_unblocked_task(&mut self) -> Option { + self.unblocked_task_queue.pop_front().inspect(|_| { + self.unblocked_task_count.increment_self(); + }) + } + + /// Deschedules given scheduled `task`. + /// + /// This must be called exactly once for all scheduled tasks to uphold both + /// `SchedulingStateMachine` and `UsageQueue` internal state consistency at any given moment of + /// time. It's serious logic error to call this twice with the same task or none at all after + /// scheduling. Similarly, calling this with not scheduled task is also forbidden. + /// + /// Note that this function intentionally doesn't take ownership of the task to avoid dropping + /// tasks inside `SchedulingStateMachine` to provide an offloading-based optimization + /// opportunity for callers. + pub fn deschedule_task(&mut self, task: &Task) { + self.active_task_count.decrement_self(); + self.handled_task_count.increment_self(); + self.unlock_usage_queues(task); + } + + #[must_use] + fn try_lock_usage_queues(&mut self, task: Task) -> Option { + let mut blocked_usage_count = ShortCounter::zero(); + + for context in task.lock_contexts() { + context.with_usage_queue_mut(&mut self.usage_queue_token, |usage_queue| { + let lock_result = if usage_queue.has_no_blocked_usage() { + usage_queue.try_lock(context.requested_usage) + } else { + LockResult::Err(()) + }; + if let Err(()) = lock_result { + blocked_usage_count.increment_self(); + let usage_from_task = (context.requested_usage, task.clone()); + usage_queue.push_blocked_usage_from_task(usage_from_task); + } + }); + } + + // no blocked usage count means success + if blocked_usage_count.is_zero() { + Some(task) + } else { + task.set_blocked_usage_count(&mut self.count_token, blocked_usage_count); + None + } + } + + fn unlock_usage_queues(&mut self, task: &Task) { + for context in task.lock_contexts() { + context.with_usage_queue_mut(&mut self.usage_queue_token, |usage_queue| { + let mut unblocked_task_from_queue = usage_queue.unlock(context.requested_usage); + + while let Some((requested_usage, task_with_unblocked_queue)) = + unblocked_task_from_queue + { + // When `try_unblock()` returns `None` as a failure of unblocking this time, + // this means the task is still blocked by other active task's usages. So, + // don't push task into unblocked_task_queue yet. It can be assumed that every + // task will eventually succeed to be unblocked, and enter in this condition + // clause as long as `SchedulingStateMachine` is used correctly. + if let Some(task) = task_with_unblocked_queue.try_unblock(&mut self.count_token) + { + self.unblocked_task_queue.push_back(task); + } + + match usage_queue.try_lock(requested_usage) { + LockResult::Ok(()) => { + // Try to further schedule blocked task for parallelism in the case of + // readonly usages + unblocked_task_from_queue = + if matches!(requested_usage, RequestedUsage::Readonly) { + usage_queue.pop_unblocked_readonly_usage_from_task() + } else { + None + }; + } + LockResult::Err(()) => panic!("should never fail in this context"), + } + } + }); + } + } + + /// Creates a new task with [`SanitizedTransaction`] with all of its corresponding + /// [`UsageQueue`]s preloaded. + /// + /// Closure (`usage_queue_loader`) is used to delegate the (possibly multi-threaded) + /// implementation of [`UsageQueue`] look-up by [`pubkey`](Pubkey) to callers. It's the + /// caller's responsibility to ensure the same instance is returned from the closure, given a + /// particular pubkey. + /// + /// Closure is used here to delegate the responsibility of primary ownership of `UsageQueue` + /// (and caching/pruning if any) to the caller. `SchedulingStateMachine` guarantees that all of + /// shared owndership of `UsageQueue`s are released and UsageQueue state is identical to just + /// after created, if `has_no_active_task()` is `true`. Also note that this is desired for + /// separation of concern. + pub fn create_task( + transaction: SanitizedTransaction, + index: usize, + usage_queue_loader: &mut impl FnMut(Pubkey) -> UsageQueue, + ) -> Task { + // Calling the _unchecked() version here is safe for faster operation, because + // `get_account_locks()` (the safe variant) is ensured to be called in + // DefaultTransactionHandler::handle() via Bank::prepare_unlocked_batch_from_single_tx(). + // + // The safe variant has additional account-locking related verifications, which is crucial. + // + // Currently the replaying stage is redundantly calling `get_account_locks()` when unified + // scheduler is enabled on the given transaction at the blockstore. This will be relaxed + // for optimization in the future. As for banking stage with unified scheduler, it will + // need to run .get_account_locks() at least once somewhere in the code path. In the + // distant future, this function `create_task()` should be adjusted so that both stages do + // the checks before calling this (say, with some ad-hoc type like + // `SanitizedTransactionWithCheckedAccountLocks`) or do the checks here, resulting in + // eliminating the redundant one in the replaying stage and in the handler. + let locks = transaction.get_account_locks_unchecked(); + + let writable_locks = locks + .writable + .iter() + .map(|address| (address, RequestedUsage::Writable)); + let readonly_locks = locks + .readonly + .iter() + .map(|address| (address, RequestedUsage::Readonly)); + + let lock_contexts = writable_locks + .chain(readonly_locks) + .map(|(address, requested_usage)| { + LockContext::new(usage_queue_loader(**address), requested_usage) + }) + .collect(); + + Task::new(TaskInner { + transaction, + index, + lock_contexts, + blocked_usage_count: TokenCell::new(ShortCounter::zero()), + }) + } + + /// Rewind the inactive state machine to be initialized + /// + /// This isn't called _reset_ to indicate this isn't safe to call this at any given moment. + /// This panics if the state machine hasn't properly been finished (i.e. there should be no + /// active task) to uphold invariants of [`UsageQueue`]s. + /// + /// This method is intended to reuse SchedulingStateMachine instance (to avoid its `unsafe` + /// [constructor](SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling) + /// as much as possible) and its (possibly cached) associated [`UsageQueue`]s for processing + /// other slots. + pub fn reinitialize(&mut self) { + assert!(self.has_no_active_task()); + assert_eq!(self.unblocked_task_queue.len(), 0); + // nice trick to ensure all fields are handled here if new one is added. + let Self { + unblocked_task_queue: _, + active_task_count, + handled_task_count, + unblocked_task_count, + total_task_count, + count_token: _, + usage_queue_token: _, + // don't add ".." here + } = self; + active_task_count.reset_to_zero(); + handled_task_count.reset_to_zero(); + unblocked_task_count.reset_to_zero(); + total_task_count.reset_to_zero(); + } + + /// Creates a new instance of [`SchedulingStateMachine`] with its `unsafe` fields created as + /// well, thus carrying over `unsafe`. + /// + /// # Safety + /// Call this exactly once for each thread. See [`TokenCell`] for details. + #[must_use] + pub unsafe fn exclusively_initialize_current_thread_for_scheduling() -> Self { + Self { + // It's very unlikely this is desired to be configurable, like + // `UsageQueueInner::blocked_usages_from_tasks`'s cap. + unblocked_task_queue: VecDeque::with_capacity(1024), + active_task_count: ShortCounter::zero(), + handled_task_count: ShortCounter::zero(), + unblocked_task_count: ShortCounter::zero(), + total_task_count: ShortCounter::zero(), + count_token: unsafe { BlockedUsageCountToken::assume_exclusive_mutating_thread() }, + usage_queue_token: unsafe { UsageQueueToken::assume_exclusive_mutating_thread() }, + } + } +} + +#[cfg(test)] +mod tests { + use { + super::*, + solana_sdk::{ + instruction::{AccountMeta, Instruction}, + message::Message, + pubkey::Pubkey, + signature::Signer, + signer::keypair::Keypair, + transaction::{SanitizedTransaction, Transaction}, + }, + std::{cell::RefCell, collections::HashMap, rc::Rc}, + }; + + fn simplest_transaction() -> SanitizedTransaction { + let payer = Keypair::new(); + let message = Message::new(&[], Some(&payer.pubkey())); + let unsigned = Transaction::new_unsigned(message); + SanitizedTransaction::from_transaction_for_tests(unsigned) + } + + fn transaction_with_readonly_address(address: Pubkey) -> SanitizedTransaction { + let instruction = Instruction { + program_id: Pubkey::default(), + accounts: vec![AccountMeta::new_readonly(address, false)], + data: vec![], + }; + let message = Message::new(&[instruction], Some(&Pubkey::new_unique())); + let unsigned = Transaction::new_unsigned(message); + SanitizedTransaction::from_transaction_for_tests(unsigned) + } + + fn transaction_with_writable_address(address: Pubkey) -> SanitizedTransaction { + let instruction = Instruction { + program_id: Pubkey::default(), + accounts: vec![AccountMeta::new(address, false)], + data: vec![], + }; + let message = Message::new(&[instruction], Some(&Pubkey::new_unique())); + let unsigned = Transaction::new_unsigned(message); + SanitizedTransaction::from_transaction_for_tests(unsigned) + } + + fn create_address_loader( + usage_queues: Option>>>, + ) -> impl FnMut(Pubkey) -> UsageQueue { + let usage_queues = usage_queues.unwrap_or_default(); + move |address| { + usage_queues + .borrow_mut() + .entry(address) + .or_default() + .clone() + } + } + + #[test] + fn test_scheduling_state_machine_creation() { + let state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + assert_eq!(state_machine.active_task_count(), 0); + assert_eq!(state_machine.total_task_count(), 0); + assert!(state_machine.has_no_active_task()); + } + + #[test] + fn test_scheduling_state_machine_good_reinitialization() { + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + state_machine.total_task_count.increment_self(); + assert_eq!(state_machine.total_task_count(), 1); + state_machine.reinitialize(); + assert_eq!(state_machine.total_task_count(), 0); + } + + #[test] + #[should_panic(expected = "assertion failed: self.has_no_active_task()")] + fn test_scheduling_state_machine_bad_reinitialization() { + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + let address_loader = &mut create_address_loader(None); + let task = SchedulingStateMachine::create_task(simplest_transaction(), 3, address_loader); + state_machine.schedule_task(task).unwrap(); + state_machine.reinitialize(); + } + + #[test] + fn test_create_task() { + let sanitized = simplest_transaction(); + let task = SchedulingStateMachine::create_task(sanitized.clone(), 3, &mut |_| { + UsageQueue::default() + }); + assert_eq!(task.task_index(), 3); + assert_eq!(task.transaction(), &sanitized); + } + + #[test] + fn test_non_conflicting_task_related_counts() { + let sanitized = simplest_transaction(); + let address_loader = &mut create_address_loader(None); + let task = SchedulingStateMachine::create_task(sanitized.clone(), 3, address_loader); + + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + let task = state_machine.schedule_task(task).unwrap(); + assert_eq!(state_machine.active_task_count(), 1); + assert_eq!(state_machine.total_task_count(), 1); + state_machine.deschedule_task(&task); + assert_eq!(state_machine.active_task_count(), 0); + assert_eq!(state_machine.total_task_count(), 1); + assert!(state_machine.has_no_active_task()); + } + + #[test] + fn test_conflicting_task_related_counts() { + let sanitized = simplest_transaction(); + let address_loader = &mut create_address_loader(None); + let task1 = SchedulingStateMachine::create_task(sanitized.clone(), 101, address_loader); + let task2 = SchedulingStateMachine::create_task(sanitized.clone(), 102, address_loader); + let task3 = SchedulingStateMachine::create_task(sanitized.clone(), 103, address_loader); + + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + assert_matches!( + state_machine + .schedule_task(task1.clone()) + .map(|t| t.task_index()), + Some(101) + ); + assert_matches!(state_machine.schedule_task(task2.clone()), None); + + state_machine.deschedule_task(&task1); + assert!(state_machine.has_unblocked_task()); + assert_eq!(state_machine.unblocked_task_queue_count(), 1); + + // unblocked_task_count() should be incremented + assert_eq!(state_machine.unblocked_task_count(), 0); + assert_eq!( + state_machine + .schedule_next_unblocked_task() + .map(|t| t.task_index()), + Some(102) + ); + assert_eq!(state_machine.unblocked_task_count(), 1); + + // there's no blocked task anymore; calling schedule_next_unblocked_task should be noop and + // shouldn't increment the unblocked_task_count(). + assert!(!state_machine.has_unblocked_task()); + assert_matches!(state_machine.schedule_next_unblocked_task(), None); + assert_eq!(state_machine.unblocked_task_count(), 1); + + assert_eq!(state_machine.unblocked_task_queue_count(), 0); + state_machine.deschedule_task(&task2); + + assert_matches!( + state_machine + .schedule_task(task3.clone()) + .map(|task| task.task_index()), + Some(103) + ); + state_machine.deschedule_task(&task3); + assert!(state_machine.has_no_active_task()); + } + + #[test] + fn test_existing_blocking_task_then_newly_scheduled_task() { + let sanitized = simplest_transaction(); + let address_loader = &mut create_address_loader(None); + let task1 = SchedulingStateMachine::create_task(sanitized.clone(), 101, address_loader); + let task2 = SchedulingStateMachine::create_task(sanitized.clone(), 102, address_loader); + let task3 = SchedulingStateMachine::create_task(sanitized.clone(), 103, address_loader); + + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + assert_matches!( + state_machine + .schedule_task(task1.clone()) + .map(|t| t.task_index()), + Some(101) + ); + assert_matches!(state_machine.schedule_task(task2.clone()), None); + + assert_eq!(state_machine.unblocked_task_queue_count(), 0); + state_machine.deschedule_task(&task1); + assert_eq!(state_machine.unblocked_task_queue_count(), 1); + + // new task is arriving after task1 is already descheduled and task2 got unblocked + assert_matches!(state_machine.schedule_task(task3.clone()), None); + + assert_eq!(state_machine.unblocked_task_count(), 0); + assert_matches!( + state_machine + .schedule_next_unblocked_task() + .map(|t| t.task_index()), + Some(102) + ); + assert_eq!(state_machine.unblocked_task_count(), 1); + + state_machine.deschedule_task(&task2); + + assert_matches!( + state_machine + .schedule_next_unblocked_task() + .map(|t| t.task_index()), + Some(103) + ); + assert_eq!(state_machine.unblocked_task_count(), 2); + + state_machine.deschedule_task(&task3); + assert!(state_machine.has_no_active_task()); + } + + #[test] + fn test_multiple_readonly_task_and_counts() { + let conflicting_address = Pubkey::new_unique(); + let sanitized1 = transaction_with_readonly_address(conflicting_address); + let sanitized2 = transaction_with_readonly_address(conflicting_address); + let address_loader = &mut create_address_loader(None); + let task1 = SchedulingStateMachine::create_task(sanitized1, 101, address_loader); + let task2 = SchedulingStateMachine::create_task(sanitized2, 102, address_loader); + + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + // both of read-only tasks should be immediately runnable + assert_matches!( + state_machine + .schedule_task(task1.clone()) + .map(|t| t.task_index()), + Some(101) + ); + assert_matches!( + state_machine + .schedule_task(task2.clone()) + .map(|t| t.task_index()), + Some(102) + ); + + assert_eq!(state_machine.active_task_count(), 2); + assert_eq!(state_machine.handled_task_count(), 0); + assert_eq!(state_machine.unblocked_task_queue_count(), 0); + state_machine.deschedule_task(&task1); + assert_eq!(state_machine.active_task_count(), 1); + assert_eq!(state_machine.handled_task_count(), 1); + assert_eq!(state_machine.unblocked_task_queue_count(), 0); + state_machine.deschedule_task(&task2); + assert_eq!(state_machine.active_task_count(), 0); + assert_eq!(state_machine.handled_task_count(), 2); + assert!(state_machine.has_no_active_task()); + } + + #[test] + fn test_all_blocking_readable_tasks_block_writable_task() { + let conflicting_address = Pubkey::new_unique(); + let sanitized1 = transaction_with_readonly_address(conflicting_address); + let sanitized2 = transaction_with_readonly_address(conflicting_address); + let sanitized3 = transaction_with_writable_address(conflicting_address); + let address_loader = &mut create_address_loader(None); + let task1 = SchedulingStateMachine::create_task(sanitized1, 101, address_loader); + let task2 = SchedulingStateMachine::create_task(sanitized2, 102, address_loader); + let task3 = SchedulingStateMachine::create_task(sanitized3, 103, address_loader); + + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + assert_matches!( + state_machine + .schedule_task(task1.clone()) + .map(|t| t.task_index()), + Some(101) + ); + assert_matches!( + state_machine + .schedule_task(task2.clone()) + .map(|t| t.task_index()), + Some(102) + ); + assert_matches!(state_machine.schedule_task(task3.clone()), None); + + assert_eq!(state_machine.active_task_count(), 3); + assert_eq!(state_machine.handled_task_count(), 0); + assert_eq!(state_machine.unblocked_task_queue_count(), 0); + state_machine.deschedule_task(&task1); + assert_eq!(state_machine.active_task_count(), 2); + assert_eq!(state_machine.handled_task_count(), 1); + assert_eq!(state_machine.unblocked_task_queue_count(), 0); + assert_matches!(state_machine.schedule_next_unblocked_task(), None); + state_machine.deschedule_task(&task2); + assert_eq!(state_machine.active_task_count(), 1); + assert_eq!(state_machine.handled_task_count(), 2); + assert_eq!(state_machine.unblocked_task_queue_count(), 1); + // task3 is finally unblocked after all of readable tasks (task1 and task2) is finished. + assert_matches!( + state_machine + .schedule_next_unblocked_task() + .map(|t| t.task_index()), + Some(103) + ); + state_machine.deschedule_task(&task3); + assert!(state_machine.has_no_active_task()); + } + + #[test] + fn test_readonly_then_writable_then_readonly_linearized() { + let conflicting_address = Pubkey::new_unique(); + let sanitized1 = transaction_with_readonly_address(conflicting_address); + let sanitized2 = transaction_with_writable_address(conflicting_address); + let sanitized3 = transaction_with_readonly_address(conflicting_address); + let address_loader = &mut create_address_loader(None); + let task1 = SchedulingStateMachine::create_task(sanitized1, 101, address_loader); + let task2 = SchedulingStateMachine::create_task(sanitized2, 102, address_loader); + let task3 = SchedulingStateMachine::create_task(sanitized3, 103, address_loader); + + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + assert_matches!( + state_machine + .schedule_task(task1.clone()) + .map(|t| t.task_index()), + Some(101) + ); + assert_matches!(state_machine.schedule_task(task2.clone()), None); + assert_matches!(state_machine.schedule_task(task3.clone()), None); + + assert_matches!(state_machine.schedule_next_unblocked_task(), None); + state_machine.deschedule_task(&task1); + assert_matches!( + state_machine + .schedule_next_unblocked_task() + .map(|t| t.task_index()), + Some(102) + ); + assert_matches!(state_machine.schedule_next_unblocked_task(), None); + state_machine.deschedule_task(&task2); + assert_matches!( + state_machine + .schedule_next_unblocked_task() + .map(|t| t.task_index()), + Some(103) + ); + assert_matches!(state_machine.schedule_next_unblocked_task(), None); + state_machine.deschedule_task(&task3); + assert!(state_machine.has_no_active_task()); + } + + #[test] + fn test_readonly_then_writable() { + let conflicting_address = Pubkey::new_unique(); + let sanitized1 = transaction_with_readonly_address(conflicting_address); + let sanitized2 = transaction_with_writable_address(conflicting_address); + let address_loader = &mut create_address_loader(None); + let task1 = SchedulingStateMachine::create_task(sanitized1, 101, address_loader); + let task2 = SchedulingStateMachine::create_task(sanitized2, 102, address_loader); + + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + assert_matches!( + state_machine + .schedule_task(task1.clone()) + .map(|t| t.task_index()), + Some(101) + ); + assert_matches!(state_machine.schedule_task(task2.clone()), None); + + // descheduling read-locking task1 should equate to unblocking write-locking task2 + state_machine.deschedule_task(&task1); + assert_matches!( + state_machine + .schedule_next_unblocked_task() + .map(|t| t.task_index()), + Some(102) + ); + state_machine.deschedule_task(&task2); + assert!(state_machine.has_no_active_task()); + } + + #[test] + fn test_blocked_tasks_writable_2_readonly_then_writable() { + let conflicting_address = Pubkey::new_unique(); + let sanitized1 = transaction_with_writable_address(conflicting_address); + let sanitized2 = transaction_with_readonly_address(conflicting_address); + let sanitized3 = transaction_with_readonly_address(conflicting_address); + let sanitized4 = transaction_with_writable_address(conflicting_address); + let address_loader = &mut create_address_loader(None); + let task1 = SchedulingStateMachine::create_task(sanitized1, 101, address_loader); + let task2 = SchedulingStateMachine::create_task(sanitized2, 102, address_loader); + let task3 = SchedulingStateMachine::create_task(sanitized3, 103, address_loader); + let task4 = SchedulingStateMachine::create_task(sanitized4, 104, address_loader); + + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + assert_matches!( + state_machine + .schedule_task(task1.clone()) + .map(|t| t.task_index()), + Some(101) + ); + assert_matches!(state_machine.schedule_task(task2.clone()), None); + assert_matches!(state_machine.schedule_task(task3.clone()), None); + assert_matches!(state_machine.schedule_task(task4.clone()), None); + + state_machine.deschedule_task(&task1); + assert_matches!( + state_machine + .schedule_next_unblocked_task() + .map(|t| t.task_index()), + Some(102) + ); + assert_matches!( + state_machine + .schedule_next_unblocked_task() + .map(|t| t.task_index()), + Some(103) + ); + // the above deschedule_task(task1) call should only unblock task2 and task3 because these + // are read-locking. And shouldn't unblock task4 because it's write-locking + assert_matches!(state_machine.schedule_next_unblocked_task(), None); + + state_machine.deschedule_task(&task2); + // still task4 is blocked... + assert_matches!(state_machine.schedule_next_unblocked_task(), None); + + state_machine.deschedule_task(&task3); + // finally task4 should be unblocked + assert_matches!( + state_machine + .schedule_next_unblocked_task() + .map(|t| t.task_index()), + Some(104) + ); + state_machine.deschedule_task(&task4); + assert!(state_machine.has_no_active_task()); + } + + #[test] + fn test_gradual_locking() { + let conflicting_address = Pubkey::new_unique(); + let sanitized1 = transaction_with_writable_address(conflicting_address); + let sanitized2 = transaction_with_writable_address(conflicting_address); + let usage_queues = Rc::new(RefCell::new(HashMap::new())); + let address_loader = &mut create_address_loader(Some(usage_queues.clone())); + let task1 = SchedulingStateMachine::create_task(sanitized1, 101, address_loader); + let task2 = SchedulingStateMachine::create_task(sanitized2, 102, address_loader); + + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + assert_matches!( + state_machine + .schedule_task(task1.clone()) + .map(|t| t.task_index()), + Some(101) + ); + assert_matches!(state_machine.schedule_task(task2.clone()), None); + let usage_queues = usage_queues.borrow_mut(); + let usage_queue = usage_queues.get(&conflicting_address).unwrap(); + usage_queue + .0 + .with_borrow_mut(&mut state_machine.usage_queue_token, |usage_queue| { + assert_matches!(usage_queue.current_usage, Some(Usage::Writable)); + }); + // task2's fee payer should have been locked already even if task2 is blocked still via the + // above the schedule_task(task2) call + let fee_payer = task2.transaction().message().fee_payer(); + let usage_queue = usage_queues.get(fee_payer).unwrap(); + usage_queue + .0 + .with_borrow_mut(&mut state_machine.usage_queue_token, |usage_queue| { + assert_matches!(usage_queue.current_usage, Some(Usage::Writable)); + }); + state_machine.deschedule_task(&task1); + assert_matches!( + state_machine + .schedule_next_unblocked_task() + .map(|t| t.task_index()), + Some(102) + ); + state_machine.deschedule_task(&task2); + assert!(state_machine.has_no_active_task()); + } + + #[test] + #[should_panic(expected = "internal error: entered unreachable code")] + fn test_unreachable_unlock_conditions1() { + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + let usage_queue = UsageQueue::default(); + usage_queue + .0 + .with_borrow_mut(&mut state_machine.usage_queue_token, |usage_queue| { + let _ = usage_queue.unlock(RequestedUsage::Writable); + }); + } + + #[test] + #[should_panic(expected = "internal error: entered unreachable code")] + fn test_unreachable_unlock_conditions2() { + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + let usage_queue = UsageQueue::default(); + usage_queue + .0 + .with_borrow_mut(&mut state_machine.usage_queue_token, |usage_queue| { + usage_queue.current_usage = Some(Usage::Writable); + let _ = usage_queue.unlock(RequestedUsage::Readonly); + }); + } + + #[test] + #[should_panic(expected = "internal error: entered unreachable code")] + fn test_unreachable_unlock_conditions3() { + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; + let usage_queue = UsageQueue::default(); + usage_queue + .0 + .with_borrow_mut(&mut state_machine.usage_queue_token, |usage_queue| { + usage_queue.current_usage = Some(Usage::Readonly(ShortCounter::one())); + let _ = usage_queue.unlock(RequestedUsage::Writable); + }); + } } diff --git a/unified-scheduler-pool/Cargo.toml b/unified-scheduler-pool/Cargo.toml index 7626215b1e1126..9bd668f2799ab0 100644 --- a/unified-scheduler-pool/Cargo.toml +++ b/unified-scheduler-pool/Cargo.toml @@ -12,6 +12,7 @@ edition = { workspace = true } [dependencies] assert_matches = { workspace = true } crossbeam-channel = { workspace = true } +dashmap = { workspace = true } derivative = { workspace = true } log = { workspace = true } solana-ledger = { workspace = true } diff --git a/unified-scheduler-pool/src/lib.rs b/unified-scheduler-pool/src/lib.rs index 81a3506ea28480..eed740025bcad4 100644 --- a/unified-scheduler-pool/src/lib.rs +++ b/unified-scheduler-pool/src/lib.rs @@ -1,3 +1,8 @@ +//! NOTE: While the unified scheduler is fully functional and moderately performant even with +//! mainnet-beta, it has known resource-exhaustion related security issues for replaying +//! specially-crafted blocks produced by malicious leaders. Thus, this experimental and +//! nondefault functionality is exempt from the bug bounty program for now. +//! //! Transaction scheduling code. //! //! This crate implements 3 solana-runtime traits (`InstalledScheduler`, `UninstalledScheduler` and @@ -10,7 +15,8 @@ use { assert_matches::assert_matches, - crossbeam_channel::{select, unbounded, Receiver, SendError, Sender}, + crossbeam_channel::{never, select, unbounded, Receiver, RecvError, SendError, Sender}, + dashmap::DashMap, derivative::Derivative, log::*, solana_ledger::blockstore_processor::{ @@ -26,8 +32,11 @@ use { }, prioritization_fee_cache::PrioritizationFeeCache, }, - solana_sdk::transaction::{Result, SanitizedTransaction}, - solana_unified_scheduler_logic::Task, + solana_sdk::{ + pubkey::Pubkey, + transaction::{Result, SanitizedTransaction}, + }, + solana_unified_scheduler_logic::{SchedulingStateMachine, Task, UsageQueue}, solana_vote::vote_sender_types::ReplayVoteSender, std::{ fmt::Debug, @@ -90,10 +99,8 @@ where replay_vote_sender: Option, prioritization_fee_cache: Arc, ) -> Arc { - let handler_count = handler_count.unwrap_or(1); - // we're hard-coding the number of handler thread to 1, meaning this impl is currently - // single-threaded still. - assert_eq!(handler_count, 1); // replace this with assert!(handler_count >= 1) later + let handler_count = handler_count.unwrap_or(Self::default_handler_count()); + assert!(handler_count >= 1); Arc::new_cyclic(|weak_self| Self { scheduler_inners: Mutex::default(), @@ -386,13 +393,35 @@ mod chained_channel { } } +/// The primary owner of all [`UsageQueue`]s used for particular [`PooledScheduler`]. +/// +/// Currently, the simplest implementation. This grows memory usage in unbounded way. Cleaning will +/// be added later. This struct is here to be put outside `solana-unified-scheduler-logic` for the +/// crate's original intent (separation of logics from this crate). Some practical and mundane +/// pruning will be implemented in this type. +#[derive(Default, Debug)] +pub struct UsageQueueLoader { + usage_queues: DashMap, +} + +impl UsageQueueLoader { + pub fn load(&self, address: Pubkey) -> UsageQueue { + self.usage_queues.entry(address).or_default().clone() + } +} + +// (this is slow needing atomic mem reads. However, this can be turned into a lot faster +// optimizer-friendly version as shown in this crossbeam pr: +// https://github.com/crossbeam-rs/crossbeam/pull/1047) +fn disconnected() -> Receiver { + // drop the sender residing at .0, returning an always-disconnected receiver. + unbounded().1 +} + fn initialized_result_with_timings() -> ResultWithTimings { (Ok(()), ExecuteTimings::default()) } -// Currently, simplest possible implementation (i.e. single-threaded) -// this will be replaced with more proper implementation... -// not usable at all, especially for mainnet-beta #[derive(Debug)] pub struct PooledScheduler { inner: PooledSchedulerInner, @@ -402,6 +431,7 @@ pub struct PooledScheduler { #[derive(Debug)] pub struct PooledSchedulerInner, TH: TaskHandler> { thread_manager: ThreadManager, + usage_queue_loader: UsageQueueLoader, } // This type manages the OS threads for scheduling and executing transactions. The term @@ -427,6 +457,7 @@ impl PooledScheduler { Self::from_inner( PooledSchedulerInner:: { thread_manager: ThreadManager::new(pool), + usage_queue_loader: UsageQueueLoader::default(), }, initial_context, ) @@ -518,7 +549,6 @@ impl, TH: TaskHandler> ThreadManager { let new_task_receiver = self.new_task_receiver.clone(); let mut session_ending = false; - let mut active_task_count: usize = 0; // Now, this is the main loop for the scheduler thread, which is a special beast. // @@ -558,61 +588,99 @@ impl, TH: TaskHandler> ThreadManager { // cycles out of the scheduler thread. Thus, any kinds of unessential overhead sources // like syscalls, VDSO, and even memory (de)allocation should be avoided at all costs // by design or by means of offloading at the last resort. - move || loop { - let mut is_finished = false; - while !is_finished { - select! { - recv(finished_task_receiver) -> executed_task => { - let executed_task = executed_task.unwrap(); - - active_task_count = active_task_count.checked_sub(1).unwrap(); - let result_with_timings = result_with_timings.as_mut().unwrap(); - Self::accumulate_result_with_timings(result_with_timings, executed_task); - }, - recv(new_task_receiver) -> message => { - assert!(!session_ending); - - match message.unwrap() { - NewTaskPayload::Payload(task) => { - // so, we're NOT scheduling at all here; rather, just execute - // tx straight off. the inter-tx locking deps aren't needed to - // be resolved in the case of single-threaded FIFO like this. - runnable_task_sender - .send_payload(task) - .unwrap(); - active_task_count = active_task_count.checked_add(1).unwrap(); - } - NewTaskPayload::OpenSubchannel(context) => { - // signal about new SchedulingContext to handler threads - runnable_task_sender - .send_chained_channel(context, handler_count) - .unwrap(); - assert_matches!( - result_with_timings.replace(initialized_result_with_timings()), - None - ); - } - NewTaskPayload::CloseSubchannel => { - session_ending = true; - } - } - }, - }; + move || { + let (do_now, dont_now) = (&disconnected::<()>(), &never::<()>()); + let dummy_receiver = |trigger| { + if trigger { + do_now + } else { + dont_now + } + }; - // a really simplistic termination condition, which only works under the - // assumption of single handler thread... - is_finished = session_ending && active_task_count == 0; - } + let mut state_machine = unsafe { + SchedulingStateMachine::exclusively_initialize_current_thread_for_scheduling() + }; - if session_ending { - session_result_sender - .send(Some( - result_with_timings - .take() - .unwrap_or_else(initialized_result_with_timings), - )) - .unwrap(); - session_ending = false; + loop { + let mut is_finished = false; + while !is_finished { + // ALL recv selectors are eager-evaluated ALWAYS by current crossbeam impl, + // which isn't great and is inconsistent with `if`s in the Rust's match + // arm. So, eagerly binding the result to a variable unconditionally here + // makes no perf. difference... + let dummy_unblocked_task_receiver = + dummy_receiver(state_machine.has_unblocked_task()); + + // (Assume this is biased; i.e. select_biased! in this crossbeam pr: + // https://github.com/rust-lang/futures-rs/pull/1976) + // + // There's something special called dummy_unblocked_task_receiver here. + // This odd pattern was needed to react to newly unblocked tasks from + // _not-crossbeam-channel_ event sources, precisely at the specified + // precedence among other selectors, while delegating the conrol flow to + // select_biased!. + // + // In this way, hot looping is avoided and overall control flow is much + // consistent. Note that unified scheduler will go + // into busy looping to seek lowest latency eventually. However, not now, + // to measure _actual_ cpu usage easily with the select approach. + select! { + recv(finished_task_receiver) -> executed_task => { + let executed_task = executed_task.unwrap(); + + state_machine.deschedule_task(&executed_task.task); + let result_with_timings = result_with_timings.as_mut().unwrap(); + Self::accumulate_result_with_timings(result_with_timings, executed_task); + }, + recv(dummy_unblocked_task_receiver) -> dummy => { + assert_matches!(dummy, Err(RecvError)); + + let task = state_machine + .schedule_next_unblocked_task() + .expect("unblocked task"); + runnable_task_sender.send_payload(task).unwrap(); + }, + recv(new_task_receiver) -> message => { + assert!(!session_ending); + + match message.unwrap() { + NewTaskPayload::Payload(task) => { + if let Some(task) = state_machine.schedule_task(task) { + runnable_task_sender.send_payload(task).unwrap(); + } + } + NewTaskPayload::OpenSubchannel(context) => { + // signal about new SchedulingContext to handler threads + runnable_task_sender + .send_chained_channel(context, handler_count) + .unwrap(); + assert_matches!( + result_with_timings.replace(initialized_result_with_timings()), + None + ); + } + NewTaskPayload::CloseSubchannel => { + session_ending = true; + } + } + }, + }; + + is_finished = session_ending && state_machine.has_no_active_task(); + } + + if session_ending { + state_machine.reinitialize(); + session_result_sender + .send(Some( + result_with_timings + .take() + .unwrap_or_else(initialized_result_with_timings), + )) + .unwrap(); + session_ending = false; + } } } }; @@ -741,7 +809,9 @@ impl InstalledScheduler for PooledScheduler { } fn schedule_execution(&self, &(transaction, index): &(&SanitizedTransaction, usize)) { - let task = Task::create_task(transaction.clone(), index); + let task = SchedulingStateMachine::create_task(transaction.clone(), index, &mut |pubkey| { + self.inner.usage_queue_loader.load(pubkey) + }); self.inner.thread_manager.send_task(task); } @@ -1020,7 +1090,7 @@ mod tests { .result, Ok(_) ); - scheduler.schedule_execution(&(good_tx_after_bad_tx, 0)); + scheduler.schedule_execution(&(good_tx_after_bad_tx, 1)); scheduler.pause_for_recent_blockhash(); // transaction_count should remain same as scheduler should be bailing out. // That's because we're testing the serialized failing execution case in this test. @@ -1244,4 +1314,42 @@ mod tests { 4 ); } + + // See comment in SchedulingStateMachine::create_task() for the justification of this test + #[test] + fn test_enfoced_get_account_locks_validation() { + solana_logger::setup(); + + let GenesisConfigInfo { + genesis_config, + ref mint_keypair, + .. + } = create_genesis_config(10_000); + let bank = Bank::new_for_tests(&genesis_config); + let bank = &setup_dummy_fork_graph(bank); + + let mut tx = system_transaction::transfer( + mint_keypair, + &solana_sdk::pubkey::new_rand(), + 2, + genesis_config.hash(), + ); + // mangle the transfer tx to try to lock fee_payer (= mint_keypair) address twice! + tx.message.account_keys.push(tx.message.account_keys[0]); + let tx = &SanitizedTransaction::from_transaction_for_tests(tx); + + // this internally should call SanitizedTransaction::get_account_locks(). + let result = &mut Ok(()); + let timings = &mut ExecuteTimings::default(); + let prioritization_fee_cache = Arc::new(PrioritizationFeeCache::new(0u64)); + let handler_context = &HandlerContext { + log_messages_bytes_limit: None, + transaction_status_sender: None, + replay_vote_sender: None, + prioritization_fee_cache, + }; + + DefaultTaskHandler::handle(result, timings, bank, tx, 0, handler_context); + assert_matches!(result, Err(TransactionError::AccountLoadedTwice)); + } }