-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathposev.go
146 lines (129 loc) · 2.84 KB
/
posev.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
package posev
import (
"github.com/mitsuse/matrix-go"
"github.com/mitsuse/matrix-go/dense"
//~ "log"
"math"
"math/rand"
)
// matrix.Matrix.Scalar() mutates the matrix, it is not always handy
func ScalarMult(m matrix.Matrix, s float64) matrix.Matrix {
r := dense.Zeros(m.Shape())
c := m.All()
for c.HasNext() {
v, i, j := c.Get()
r.Update(i, j, v*s)
}
return r
}
func VecNorm(m matrix.Matrix) float64 {
n := float64(0)
c := m.All()
for c.HasNext() {
v, _, _ := c.Get()
n += v * v
}
return math.Sqrt(n)
}
func VecNormalize(m matrix.Matrix) matrix.Matrix {
n := VecNorm(m)
return ScalarMult(m, float64(1)/n)
}
func randUnitVec(n int) matrix.Matrix {
r := dense.Zeros(n, 1)
for i := 0; i < n; i++ {
r.Update(i, 0, rand.NormFloat64())
}
return VecNormalize(r)
}
func PowerTopEigen(a matrix.Matrix, maxIters int, eps float64) (v matrix.Matrix, e float64) {
v = randUnitVec(a.Columns())
o := float64(0)
for i := 0; i < maxIters; i++ {
z := a.Multiply(v)
v = VecNormalize(z)
e = v.Transpose().Multiply(z).Get(0, 0)
if math.Abs((e-o)/e) < eps {
return
}
o = e
}
return nil, 0
}
func DeltaEigen(e float64, v, a matrix.Matrix) float64 {
dim := v.Rows()
id := dense.Zeros(dim, dim)
for i := 0; i < dim; i++ {
id.Update(i, i, e)
}
z := id.Subtract(a).Multiply(v)
return VecNorm(z)
}
func PowerTopSingular(a, r matrix.Matrix, maxIters int, eps float64) (u, v, w matrix.Matrix, s float64) {
n := a.Columns()
b := a.Transpose()
for i := 0; i < maxIters; i++ {
u = VecNormalize(a.Multiply(r))
v = b.Multiply(u)
s = VecNorm(v)
v.Scalar(float64(1) / s)
d := float64(0)
for j := 0; j < n; j++ {
c := math.Abs(r.Get(j, 0) - v.Get(j, 0))
if d < c {
d = c
}
}
if d > 10*eps {
w = r.Subtract(v)
}
if d < eps {
return
}
r = v
}
return nil, nil, nil, 0
}
func HotellingDeflation(a, l, r matrix.Matrix, s float64) (b matrix.Matrix) {
b = dense.Zeros(a.Shape())
for i := 0; i < l.Rows(); i++ {
for j := 0; j < r.Rows(); j++ {
b.Update(i, j, a.Get(i, j)-s*l.Get(i, 0)*r.Get(j, 0))
}
}
return
}
func PowerTopKSingular(a matrix.Matrix, k, maxIters int, eps float64) (u, v matrix.Matrix, s []float64) {
tol := 0.000000001
m := a.Rows()
n := a.Columns()
u = dense.Zeros(m, k)
v = dense.Zeros(n, k)
s = make([]float64, k)
r := randUnitVec(n)
for i := 0; i < k; i++ {
ui, vi, w, si := PowerTopSingular(a, r, maxIters, eps)
if si/(s[0]+tol) < tol {
// Singluar values are too small
return
}
s[i] = si
for j := 0; j < m; j++ {
u.Update(j, i, ui.Get(j, 0))
}
for j := 0; j < n; j++ {
v.Update(j, i, vi.Get(j, 0))
}
a = HotellingDeflation(a, ui, vi, si)
if w == nil {
r = randUnitVec(n)
} else {
r = VecNormalize(w)
}
}
return
}
func DeltaSingular(s float64, u, v, a matrix.Matrix) float64 {
z := a.Multiply(v).Subtract(ScalarMult(u, s))
return VecNorm(z)
}