Skip to content

Latest commit

 

History

History
146 lines (102 loc) · 4.85 KB

README.md

File metadata and controls

146 lines (102 loc) · 4.85 KB

Regressionizer

Python package with a class that allows pipeline-like specification and execution of regression workflows.

Extensive guide is given in the Jupyter notebook "Rapid-specification-of-regression-workflows.ipynb" and the corresponding Markdown document "Rapid-specification-of-regression-workflows.md".


Features summary

  • The class Regressionizer facilitates rapid specifications of regressions workflows.

    • To quickly specify:
      • data rescaling and summary
      • regression computations
      • outliers finding
      • conditional Cumulative Distribution Functions (CDFs) reconstruction
      • plotting of data, fits, residual errors, outliers, CDFs
  • Regressionizer works with data frames, numpy arrays, lists of numbers, and lists of numeric pairs.

Details and arguments

  • The curves computed with Quantile Regression are called regression quantiles.

  • Regressionizer has three regression methods:

    • quantile_regression
    • quantile_regression_fit
    • least_squares_fit
  • The regression quantiles computed with the methods quantile_regression and quantile_regression_fit correspond to probabilities specified with the argument probs.

  • The methodquantile_regression computes fits using a B-spline functions basis.

    • The basis is specified with the arguments knots and order.
    • order is 3 by default.
  • The methods quantile_regession_fit and least_squares_fit use lists of basis functions to fit with specified with the argument funcs.

Workflows flowchart

The following flowchart summarizes the workflows that are supported by Regressionizer:


Usage examples

Import libraries:

from Regressionizer import *
import numpy as np

Generate random data:

np.random.seed(0)
x = np.linspace(0, 2, 300)
y = np.sin(2 * np.pi * x) + np.random.normal(0, 0.4, x.shape)
data = np.column_stack((x, y)

Compute quantile regression for probabilities [0.2, 0.5, 0.8] and make the corresponding plot:

obj = (Regressionizer(data)
       .quantile_regression(knots=8, probs=[0.2, 0.5, 0.8])
       .plot(title="B-splines fit", template="plotly")
       )

Show the plot obtained above:

obj.take_value().show()


References

Articles, books

[RK1] Roger Koenker, Quantile Regression, Cambridge University Press, 2005.

[RK2] Roger Koenker, "Quantile Regression in R: a vignette", (2006), CRAN.

[AA1] Anton Antonov, "A monad for Quantile Regression workflows", (2018), MathematicaForPrediction at GitHub.

Packages, paclets

[RKp1] Roger Koenker, quantreg, CRAN.

[AAp1] Anton Antonov, Quantile Regression WL paclet, (2014-2023), GitHub/antononcube.

[AAp2] Anton Antonov, Monadic Quantile Regression WL paclet, (2018-2024), GitHub/antononcube.

[AAp3] Anton Antonov, QuantileRegression, (2019), Wolfram Function Repository.

Repositories

[AAr1] Anton Antonov, DSL::English::QuantileRegressionWorkflows in Raku, (2020), GitHub/antononcube.

Videos

[AAv1] Anton Antonov, "Boston useR! QuantileRegression Workflows 2019-04-18", (2019), Anton Antonov at YouTube.

[AAv2] Anton Antonov, "useR! 2020: How to simplify Machine Learning workflows specifications", (2020), R Consortium at YouTube.