-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.py
464 lines (322 loc) · 17.6 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import pandas as pd
import numpy as np
import sys
import sklearn
import io
import random
import os
import sys
import traceback
import pickle
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.metrics import roc_auc_score
from mlxtend.feature_selection import SequentialFeatureSelector
from sklearn.model_selection import train_test_split
train_url = 'KDDTrain+.txt'
test_url = 'KDDTest+.txt'
col_names = ["duration","protocol_type","service","flag","src_bytes",
"dst_bytes","land","wrong_fragment","urgent","hot","num_failed_logins",
"logged_in","num_compromised","root_shell","su_attempted","num_root",
"num_file_creations","num_shells","num_access_files","num_outbound_cmds",
"is_host_login","is_guest_login","count","srv_count","serror_rate",
"srv_serror_rate","rerror_rate","srv_rerror_rate","same_srv_rate",
"diff_srv_rate","srv_diff_host_rate","dst_host_count","dst_host_srv_count",
"dst_host_same_srv_rate","dst_host_diff_srv_rate","dst_host_same_src_port_rate",
"dst_host_srv_diff_host_rate","dst_host_serror_rate","dst_host_srv_serror_rate",
"dst_host_rerror_rate","dst_host_srv_rerror_rate","label","extra"]
df = pd.read_csv(train_url,header=None, names = col_names)
df= df.drop(['extra'], axis=1)
df_test = pd.read_csv(test_url,header=None, names = col_names)
df_test = df_test.drop(['extra'], axis = 1)
print('Dimensions of the Training set:',df.shape)
print('Dimensions of the Test set:',df_test.shape)
selected_col_names = ['duration' ,'protocol_type', 'service', 'flag', 'src_bytes',
'dst_bytes', 'wrong_fragment', 'hot', 'logged_in', 'land', 'urgent',
'count', "srv_count", "serror_rate",
"rerror_rate", 'num_failed_logins', "diff_srv_rate", "dst_host_count",
"dst_host_srv_count", "dst_host_same_srv_rate", "dst_host_diff_srv_rate",
"dst_host_same_src_port_rate", "dst_host_srv_diff_host_rate", "dst_host_serror_rate",
"dst_host_srv_serror_rate", "dst_host_rerror_rate", "dst_host_srv_rerror_rate", "label"]
for col in df_test.columns.tolist():
if col not in selected_col_names:
df_test.drop(col, axis=1, inplace=True)
print("Columns", df_test.columns.tolist())
#Features by Wrapper- Random Forest['duration', 'src_bytes', 'dst_bytes', 'land', 'wrong_fragment','urgent', 'count', 'srv_count', 'rerror_rate', 'dst_host_count',
# 'dst_host_srv_count', 'dst_host_diff_srv_rate',
# 'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate',
# 'flag_SH']
#Features by Wrapper - Naive Bayes['land', 'wrong_fragment', 'dst_host_srv_count',
# 'dst_host_same_src_port_rate', 'service_Z39_50', 'service_pm_dump',
# 'flag_SH']
#Features by Wrapper - Decision Tree['duration', 'src_bytes', 'dst_bytes', 'land', 'wrong_fragment',
# 'urgent', 'hot', 'num_failed_logins', 'logged_in', 'count', 'srv_count',
# 'rerror_rate', 'dst_host_count', 'dst_host_srv_count',
# 'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate',
# 'dst_host_srv_diff_host_rate', 'flag_SH']
def select_columns(data_frame, column_names):
new_frame = data_frame.loc[:, column_names]
return new_frame
df = select_columns(df, selected_col_names)
df_test = select_columns(df_test, selected_col_names)
# #Print Attribute Values
# print('Label distribution Training set:')
# print(df['label'].value_counts())
# print()
# print('Label distribution Test set:')
# print(df_test['label'].value_counts())
print('Training set:')
for col_name in df.columns:
if df[col_name].dtypes == 'object' :
unique_cat = len(df[col_name].unique())
print("Feature '{col_name}' has {unique_cat} categories".format(col_name=col_name, unique_cat=unique_cat))
print()
print('Distribution of categories in service:')
print(df['service'].value_counts().sort_values(ascending=False).head())
print('Test set:')
for col_name in df_test.columns:
if df_test[col_name].dtypes == 'object' :
unique_cat = len(df_test[col_name].unique())
print("Feature '{col_name}' has {unique_cat} categories".format(col_name=col_name, unique_cat=unique_cat))
#Data Preprocessing
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
categorical_columns=['protocol_type', 'service', 'flag']
df_categorical_values = df[categorical_columns]
testdf_categorical_values = df_test[categorical_columns]
df_categorical_values.head()
# protocol type
unique_protocol=sorted(df.protocol_type.unique())
string1 = 'Protocol_type_'
unique_protocol2=[string1 + x for x in unique_protocol]
print(unique_protocol2)
# service
unique_service=sorted(df.service.unique())
string2 = 'service_'
unique_service2=[string2 + x for x in unique_service]
print(unique_service2)
# flag
unique_flag=sorted(df.flag.unique())
string3 = 'flag_'
unique_flag2=[string3 + x for x in unique_flag]
print(unique_flag2)
# put together
dumcols=unique_protocol2 + unique_service2 + unique_flag2
#do it for test set
unique_service_test=sorted(df_test.service.unique())
unique_service2_test=[string2 + x for x in unique_service_test]
testdumcols=unique_protocol2 + unique_service2_test + unique_flag2
df_categorical_values_enc=df_categorical_values.apply(LabelEncoder().fit_transform)
print(df_categorical_values.head())
print('--------------------')
print(df_categorical_values_enc.head())
# test set
testdf_categorical_values_enc=testdf_categorical_values.apply(LabelEncoder().fit_transform)
enc = OneHotEncoder(categories='auto')
df_categorical_values_encenc = enc.fit_transform(df_categorical_values_enc)
df_cat_data = pd.DataFrame(df_categorical_values_encenc.toarray(),columns=dumcols)
# test set
testdf_categorical_values_encenc = enc.fit_transform(testdf_categorical_values_enc)
testdf_cat_data = pd.DataFrame(testdf_categorical_values_encenc.toarray(),columns=testdumcols)
df_cat_data.head()
trainservice=df['service'].tolist()
testservice= df_test['service'].tolist()
difference=list(set(trainservice) - set(testservice))
string = 'service_'
difference=[string + x for x in difference]
difference
for col in difference:
testdf_cat_data[col] = 0
print(df_cat_data.shape)
print(testdf_cat_data.shape)
newdf=df.join(df_cat_data)
newdf.drop('flag', axis=1, inplace=True)
newdf.drop('protocol_type', axis=1, inplace=True)
newdf.drop('service', axis=1, inplace=True)
# test data
newdf_test=df_test.join(testdf_cat_data)
newdf_test.drop('flag', axis=1, inplace=True)
newdf_test.drop('protocol_type', axis=1, inplace=True)
newdf_test.drop('service', axis=1, inplace=True)
print(newdf.shape)
print(newdf_test.shape)
labeldf=newdf['label']
labeldf_test=newdf_test['label']
# change the label column
newlabeldf=labeldf.replace({ 'normal' : 0, 'neptune' : 1 ,'back': 1, 'land': 1, 'pod': 1, 'smurf': 1, 'teardrop': 1,'mailbomb': 1, 'apache2': 1, 'processtable': 1, 'udpstorm': 1, 'worm': 1,
'ipsweep' : 2,'nmap' : 2,'portsweep' : 2,'satan' : 2,'mscan' : 2,'saint' : 2
,'ftp_write': 3,'guess_passwd': 3,'imap': 3,'multihop': 3,'phf': 3,'spy': 3,'warezclient': 3,'warezmaster': 3,'sendmail': 3,'named': 3,'snmpgetattack': 3,'snmpguess': 3,'xlock': 3,'xsnoop': 3,'httptunnel': 3,
'buffer_overflow': 4,'loadmodule': 4,'perl': 4,'rootkit': 4,'ps': 4,'sqlattack': 4,'xterm': 4})
newlabeldf_test=labeldf_test.replace({ 'normal' : 0, 'neptune' : 1 ,'back': 1, 'land': 1, 'pod': 1, 'smurf': 1, 'teardrop': 1,'mailbomb': 1, 'apache2': 1, 'processtable': 1, 'udpstorm': 1, 'worm': 1,
'ipsweep' : 2,'nmap' : 2,'portsweep' : 2,'satan' : 2,'mscan' : 2,'saint' : 2
,'ftp_write': 3,'guess_passwd': 3,'imap': 3,'multihop': 3,'phf': 3,'spy': 3,'warezclient': 3,'warezmaster': 3,'sendmail': 3,'named': 3,'snmpgetattack': 3,'snmpguess': 3,'xlock': 3,'xsnoop': 3,'httptunnel': 3,
'buffer_overflow': 4,'loadmodule': 4,'perl': 4,'rootkit': 4,'ps': 4,'sqlattack': 4,'xterm': 4})
# put the new label column back
newdf['label'] = newlabeldf
newdf_test['label'] = newlabeldf_test
to_drop_DoS = [0,1]
to_drop_Probe = [0,2]
# Filter all rows with label value other than itself
DoS_df=newdf[newdf['label'].isin(to_drop_DoS)]
Probe_df=newdf[newdf['label'].isin(to_drop_Probe)]
#test
DoS_df_test=newdf_test[newdf_test['label'].isin(to_drop_DoS)]
Probe_df_test=newdf_test[newdf_test['label'].isin(to_drop_Probe)]
print('Train:')
print('Dimensions of DoS:' ,DoS_df.shape)
print('Dimensions of Probe:' ,Probe_df.shape)
print()
print('Test:')
print('Dimensions of DoS:' ,DoS_df_test.shape)
print('Dimensions of Probe:' ,Probe_df_test.shape)
# Split dataframes into X & Y
X_DoS = DoS_df.drop('label',1)
Y_DoS = DoS_df.label
X_Probe = Probe_df.drop('label',1)
Y_Probe = Probe_df.label
# test set
X_DoS_test = DoS_df_test.drop('label',1)
Y_DoS_test = DoS_df_test.label
X_Probe_test = Probe_df_test.drop('label',1)
Y_Probe_test = Probe_df_test.label
colNames=list(X_DoS)
colNames_test=list(X_DoS_test)
from sklearn import preprocessing
scaler1 = preprocessing.StandardScaler().fit(X_DoS)
X_DoS=scaler1.transform(X_DoS)
scaler2 = preprocessing.StandardScaler().fit(X_Probe)
X_Probe=scaler2.transform(X_Probe)
# test data
scaler5 = preprocessing.StandardScaler().fit(X_DoS_test)
X_DoS_test=scaler5.transform(X_DoS_test)
scaler6 = preprocessing.StandardScaler().fit(X_Probe_test)
X_Probe_test=scaler6.transform(X_Probe_test)
#Random Forest
print("Random Forest")
from sklearn.feature_selection import RFE
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=10,n_jobs=2)
#DoS
clf_DoS = RandomForestClassifier(n_estimators=10,n_jobs=2)
clf_DoS.fit(X_DoS, Y_DoS.astype(int))
filename = 'finalized_model.sav'
pickle.dump(clf_DoS, open(filename, 'wb'))
clf_DoS.predict(X_DoS_test)
clf_DoS.predict_proba(X_DoS_test)[0:10]
Y_DoS_pred=clf_DoS.predict(X_DoS_test)
from sklearn.model_selection import cross_val_score
from sklearn import metrics
# Create confusion matrix
pd.crosstab(Y_DoS_test, Y_DoS_pred, rownames=['Actual attacks'], colnames=['Predicted attacks'])
accuracy = cross_val_score(clf_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='accuracy')
print("Accuracy of RF DoS: %0.5f (+/- %0.5f)" % (accuracy.mean(), accuracy.std() * 2))
precision = cross_val_score(clf_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='precision')
print("Precision: %0.5f (+/- %0.5f)" % (precision.mean(), precision.std() * 2))
recall = cross_val_score(clf_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='recall')
print("Recall: %0.5f (+/- %0.5f)" % (recall.mean(), recall.std() * 2))
f = cross_val_score(clf_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='f1')
print("F-measure: %0.5f (+/- %0.5f)" % (f.mean(), f.std() * 2))
#Probe
clf_Probe=RandomForestClassifier(n_estimators=10,n_jobs=2)
clf_Probe.fit(X_Probe, Y_Probe.astype(int))
Y_Probe_pred=clf_Probe.predict(X_Probe_test)
pd.crosstab(Y_Probe_test, Y_Probe_pred, rownames=['Actual attacks'], colnames=['Predicted attacks'])
accuracy = cross_val_score(clf_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='accuracy')
print("Accuracy of RF Probe: %0.5f (+/- %0.5f)" % (accuracy.mean(), accuracy.std() * 2))
precision = cross_val_score(clf_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='precision_macro')
print("Precision: %0.5f (+/- %0.5f)" % (precision.mean(), precision.std() * 2))
recall = cross_val_score(clf_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='recall_macro')
print("Recall: %0.5f (+/- %0.5f)" % (recall.mean(), recall.std() * 2))
f = cross_val_score(clf_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='f1_macro')
print("F-measure: %0.5f (+/- %0.5f)" % (f.mean(), f.std() * 2))
#SVM
print("SVM")
from sklearn.svm import SVC
clf_SVM_DoS=SVC(kernel='linear', C=1.0, random_state=0)
clf_SVM_DoS.fit(X_DoS, Y_DoS.astype(int))
filename = 'svm_DoS.sav'
pickle.dump(clf_SVM_DoS, open(filename, 'wb'))
clf_SVM_Probe=SVC(kernel='linear', C=1.0, random_state=0)
clf_SVM_Probe.fit(X_Probe, Y_Probe.astype(int))
filename = 'svm_Probe.sav'
pickle.dump(clf_SVM_DoS, open(filename, 'wb'))
Y_DoS_pred=clf_SVM_DoS.predict(X_DoS_test)
# Create confusion matrix
print("Confusion Matrix for SVM")
print(pd.crosstab(Y_DoS_test, Y_DoS_pred, rownames=['Actual attacks'], colnames=['Predicted attacks']))
Y_Probe_pred=clf_SVM_Probe.predict(X_Probe_test)
# Create confusion matrix
pd.crosstab(Y_Probe_test, Y_Probe_pred, rownames=['Actual attacks'], colnames=['Predicted attacks'])
accuracy = cross_val_score(clf_SVM_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='accuracy')
print("Accuracy of SVM DoS: %0.5f (+/- %0.5f)" % (accuracy.mean(), accuracy.std() * 2))
print("Precision: %0.5f (+/- %0.5f)" % (precision.mean(), precision.std() * 2))
recall = cross_val_score(clf_SVM_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='recall')
print("Recall: %0.5f (+/- %0.5f)" % (recall.mean(), recall.std() * 2))
f = cross_val_score(clf_SVM_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='f1')
print("F-measure: %0.5f (+/- %0.5f)" % (f.mean(), f.std() * 2))
accuracy = cross_val_score(clf_SVM_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='accuracy')
print("Accuracy of SVM Probe: %0.5f (+/- %0.5f)" % (accuracy.mean(), accuracy.std() * 2))
precision = cross_val_score(clf_SVM_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='precision_macro')
print("Precision: %0.5f (+/- %0.5f)" % (precision.mean(), precision.std() * 2))
recall = cross_val_score(clf_SVM_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='recall_macro')
print("Recall: %0.5f (+/- %0.5f)" % (recall.mean(), recall.std() * 2))
f = cross_val_score(clf_SVM_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='f1_macro')
print("F-measure: %0.5f (+/- %0.5f)" % (f.mean(), f.std() * 2))
#KMeans
print("KMeans")
from sklearn.neighbors import KNeighborsClassifier
#DoS
clf_KNN_DoS=KNeighborsClassifier()
clf_KNN_DoS.fit(X_DoS, Y_DoS.astype(int))
Y_DoS_pred=clf_KNN_DoS.predict(X_DoS_test)
#Confusion Matrix
pd.crosstab(Y_DoS_test, Y_DoS_pred, rownames=['Actual attacks'], colnames=['Predicted attacks'])
accuracy = cross_val_score(clf_KNN_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='accuracy')
print("Accuracy of KNN DoS: %0.5f (+/- %0.5f)" % (accuracy.mean(), accuracy.std() * 2))
precision = cross_val_score(clf_KNN_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='precision')
print("Precision: %0.5f (+/- %0.5f)" % (precision.mean(), precision.std() * 2))
recall = cross_val_score(clf_KNN_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='recall')
print("Recall: %0.5f (+/- %0.5f)" % (recall.mean(), recall.std() * 2))
f = cross_val_score(clf_KNN_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='f1')
print("F-measure: %0.5f (+/- %0.5f)" % (f.mean(), f.std() * 2))
#Probe
clf_KNN_Probe=KNeighborsClassifier()
clf_KNN_Probe.fit(X_Probe, Y_Probe.astype(int))
Y_Probe_pred=clf_KNN_Probe.predict(X_Probe_test)
# Create confusion matrix
pd.crosstab(Y_Probe_test, Y_Probe_pred, rownames=['Actual attacks'], colnames=['Predicted attacks'])
accuracy = cross_val_score(clf_KNN_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='accuracy')
print("Accuracy of KNN Probe: %0.5f (+/- %0.5f)" % (accuracy.mean(), accuracy.std() * 2))
precision = cross_val_score(clf_KNN_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='precision_macro')
print("Precision: %0.5f (+/- %0.5f)" % (precision.mean(), precision.std() * 2))
recall = cross_val_score(clf_KNN_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='recall_macro')
print("Recall: %0.5f (+/- %0.5f)" % (recall.mean(), recall.std() * 2))
f = cross_val_score(clf_KNN_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='f1_macro')
print("F-measure: %0.5f (+/- %0.5f)" % (f.mean(), f.std() * 2))
#Ensemble Learning
from sklearn.ensemble import VotingClassifier
clf_voting_DoS = VotingClassifier(estimators=[('rf', clf_DoS), ('knn', clf_KNN_DoS), ('svm', clf_SVM_DoS)], voting='hard')
clf_voting_Probe = VotingClassifier(estimators=[('rf', clf_Probe), ('knn', clf_KNN_Probe), ('svm', clf_SVM_Probe)], voting='hard')
clf_voting_DoS.fit(X_DoS, Y_DoS.astype(int))
clf_voting_Probe.fit(X_Probe, Y_Probe.astype(int))
Y_DoS_pred=clf_voting_DoS.predict(X_DoS_test)
# Create confusion matrix
pd.crosstab(Y_DoS_test, Y_DoS_pred, rownames=['Actual attacks'], colnames=['Predicted attacks'])
Y_Probe_pred=clf_voting_Probe.predict(X_Probe_test)
# Create confusion matrix
pd.crosstab(Y_Probe_test, Y_Probe_pred, rownames=['Actual attacks'], colnames=['Predicted attacks'])
print("Ensemble Learning")
accuracy = cross_val_score(clf_voting_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='accuracy')
print("Accuracy of Ensemble Learning DoS: %0.5f (+/- %0.5f)" % (accuracy.mean(), accuracy.std() * 2))
precision = cross_val_score(clf_voting_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='precision')
print("Precision: %0.5f (+/- %0.5f)" % (precision.mean(), precision.std() * 2))
recall = cross_val_score(clf_voting_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='recall')
print("Recall: %0.5f (+/- %0.5f)" % (recall.mean(), recall.std() * 2))
f = cross_val_score(clf_voting_DoS, X_DoS_test, Y_DoS_test, cv=10, scoring='f1')
print("F-measure: %0.5f (+/- %0.5f)" % (f.mean(), f.std() * 2))
accuracy = cross_val_score(clf_voting_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='accuracy')
print("Accuracy: %0.5f (+/- %0.5f)" % (accuracy.mean(), accuracy.std() * 2))
precision = cross_val_score(clf_voting_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='precision_macro')
print("Precision: %0.5f (+/- %0.5f)" % (precision.mean(), precision.std() * 2))
recall = cross_val_score(clf_voting_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='recall_macro')
print("Recall: %0.5f (+/- %0.5f)" % (recall.mean(), recall.std() * 2))
f = cross_val_score(clf_voting_Probe, X_Probe_test, Y_Probe_test, cv=10, scoring='f1_macro')
print("F-mesaure: %0.5f (+/- %0.5f)" % (f.mean(), f.std() * 2))