-
Notifications
You must be signed in to change notification settings - Fork 623
/
Copy pathpoisson_reconstruct.py
244 lines (194 loc) · 6.83 KB
/
poisson_reconstruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
"""
Script for fast image reconstruction from gradients.
Based on Ramesh Raskar's Matlab script, available here:
http://web.media.mit.edu/~raskar/photo/code.pdf
Adapted slightly for doing "mixed" Poisson Image Editing [Perez et al.]
Paper: http://www.cs.jhu.edu/~misha/Fall07/Papers/Perez03.pdf
"""
from __future__ import division
import numpy as np
import scipy.fftpack
import scipy.ndimage
import cv2
import matplotlib.pyplot as plt
#sns.set(style="darkgrid")
def DST(x):
"""
Converts Scipy's DST output to Matlab's DST (scaling).
"""
X = scipy.fftpack.dst(x,type=1,axis=0)
return X/2.0
def IDST(X):
"""
Inverse DST. Python -> Matlab
"""
n = X.shape[0]
x = np.real(scipy.fftpack.idst(X,type=1,axis=0))
return x/(n+1.0)
def get_grads(im):
"""
return the x and y gradients.
"""
[H,W] = im.shape
Dx,Dy = np.zeros((H,W),'float32'), np.zeros((H,W),'float32')
j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)
Dx[j,k] = im[j,k+1] - im[j,k]
Dy[j,k] = im[j+1,k] - im[j,k]
return Dx,Dy
def get_laplacian(Dx,Dy):
"""
return the laplacian
"""
[H,W] = Dx.shape
Dxx, Dyy = np.zeros((H,W)), np.zeros((H,W))
j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)
Dxx[j,k+1] = Dx[j,k+1] - Dx[j,k]
Dyy[j+1,k] = Dy[j+1,k] - Dy[j,k]
return Dxx+Dyy
def poisson_solve(gx,gy,bnd):
# convert to double:
gx = gx.astype('float32')
gy = gy.astype('float32')
bnd = bnd.astype('float32')
H,W = bnd.shape
L = get_laplacian(gx,gy)
# set the interior of the boundary-image to 0:
bnd[1:-1,1:-1] = 0
# get the boundary laplacian:
L_bp = np.zeros_like(L)
L_bp[1:-1,1:-1] = -4*bnd[1:-1,1:-1] \
+ bnd[1:-1,2:] + bnd[1:-1,0:-2] \
+ bnd[2:,1:-1] + bnd[0:-2,1:-1] # delta-x
L = L - L_bp
L = L[1:-1,1:-1]
# compute the 2D DST:
L_dst = DST(DST(L).T).T #first along columns, then along rows
# normalize:
[xx,yy] = np.meshgrid(np.arange(1,W-1),np.arange(1,H-1))
D = (2*np.cos(np.pi*xx/(W-1))-2) + (2*np.cos(np.pi*yy/(H-1))-2)
L_dst = L_dst/D
img_interior = IDST(IDST(L_dst).T).T # inverse DST for rows and columns
img = bnd.copy()
img[1:-1,1:-1] = img_interior
return img
def blit_images(im_top,im_back,scale_grad=1.0,mode='max'):
"""
combine images using poission editing.
IM_TOP and IM_BACK should be of the same size.
"""
assert np.all(im_top.shape==im_back.shape)
im_top = im_top.copy().astype('float32')
im_back = im_back.copy().astype('float32')
im_res = np.zeros_like(im_top)
# frac of gradients which come from source:
for ch in xrange(im_top.shape[2]):
ims = im_top[:,:,ch]
imd = im_back[:,:,ch]
[gxs,gys] = get_grads(ims)
[gxd,gyd] = get_grads(imd)
gxs *= scale_grad
gys *= scale_grad
gxs_idx = gxs!=0
gys_idx = gys!=0
# mix the source and target gradients:
if mode=='max':
gx = gxs.copy()
gxm = (np.abs(gxd))>np.abs(gxs)
gx[gxm] = gxd[gxm]
gy = gys.copy()
gym = np.abs(gyd)>np.abs(gys)
gy[gym] = gyd[gym]
# get gradient mixture statistics:
f_gx = np.sum((gx[gxs_idx]==gxs[gxs_idx]).flat) / (np.sum(gxs_idx.flat)+1e-6)
f_gy = np.sum((gy[gys_idx]==gys[gys_idx]).flat) / (np.sum(gys_idx.flat)+1e-6)
if min(f_gx, f_gy) <= 0.35:
m = 'max'
if scale_grad > 1:
m = 'blend'
return blit_images(im_top, im_back, scale_grad=1.5, mode=m)
elif mode=='src':
gx,gy = gxd.copy(), gyd.copy()
gx[gxs_idx] = gxs[gxs_idx]
gy[gys_idx] = gys[gys_idx]
elif mode=='blend': # from recursive call:
# just do an alpha blend
gx = gxs+gxd
gy = gys+gyd
im_res[:,:,ch] = np.clip(poisson_solve(gx,gy,imd),0,255)
return im_res.astype('uint8')
def contiguous_regions(mask):
"""
return a list of (ind0, ind1) such that mask[ind0:ind1].all() is
True and we cover all such regions
"""
in_region = None
boundaries = []
for i, val in enumerate(mask):
if in_region is None and val:
in_region = i
elif in_region is not None and not val:
boundaries.append((in_region, i))
in_region = None
if in_region is not None:
boundaries.append((in_region, i+1))
return boundaries
if __name__=='__main__':
"""
example usage:
"""
import seaborn as sns
im_src = cv2.imread('i2.jpg').astype('float32')
im_dst = cv2.imread('gg.jpg').astype('float32')
mu = np.mean(np.reshape(im_src,[im_src.shape[0]*im_src.shape[1],3]),axis=0)
# print mu
sz = (700,700)
im_src = cv2.resize(im_src,sz)
im_dst = cv2.resize(im_dst,sz)
im0 = im_dst[:,:,0] > 100
im_dst[im0,:] = im_src[im0,:]
im_dst[~im0,:] = 50
im_dst = cv2.GaussianBlur(im_dst,(5,5),5)
im_alpha = 0.8*im_dst + 0.2*im_src
# plt.imshow(im_dst)
# plt.show()
im_res = blit_images(im_src,im_dst)
import scipy
scipy.misc.imsave('orig.png',im_src[:,:,::-1].astype('uint8'))
scipy.misc.imsave('alpha.png',im_alpha[:,:,::-1].astype('uint8'))
scipy.misc.imsave('poisson.png',im_res[:,:,::-1].astype('uint8'))
im_actual_L = cv2.cvtColor(im_src.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
im_alpha_L = cv2.cvtColor(im_alpha.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
im_poisson_L = cv2.cvtColor(im_res.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
# plt.imshow(im_alpha_L)
# plt.show()
for i in xrange(500,im_alpha_L.shape[1],5):
l_actual = im_actual_L[i,:]#-im_actual_L[i,:-1]
l_alpha = im_alpha_L[i,:]#-im_alpha_L[i,:-1]
l_poisson = im_poisson_L[i,:]#-im_poisson_L[i,:-1]
with sns.axes_style("darkgrid"):
plt.subplot(2,1,2)
plt.plot(l_alpha,label='alpha')
plt.hold(True)
plt.plot(l_poisson,label='poisson')
plt.plot(l_actual,label='actual')
plt.legend()
# find "text regions":
is_txt = ~im0[i,:]
t_loc = contiguous_regions(is_txt)
ax = plt.gca()
for b0,b1 in t_loc:
ax.axvspan(b0, b1, facecolor='red', alpha=0.1)
with sns.axes_style("white"):
plt.subplot(2,1,1)
plt.imshow(im_alpha[:,:,::-1].astype('uint8'))
plt.hold(True)
plt.plot([0,im_alpha_L.shape[0]-1],[i,i],'r')
plt.axis('image')
plt.show()
plt.subplot(1,3,1)
plt.imshow(im_src[:,:,::-1].astype('uint8'))
plt.subplot(1,3,2)
plt.imshow(im_alpha[:,:,::-1].astype('uint8'))
plt.subplot(1,3,3)
plt.imshow(im_res[:,:,::-1]) #cv2 reads in BGR
plt.show()