-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
56 lines (42 loc) · 1.23 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from flask import Flask, request, jsonify
from flask_cors import CORS
import pickle
import nltk
import string
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
app = Flask(__name__)
CORS(app) # Enable CORS for all routes
# Load model and vectorizer
tfidf = pickle.load(open('vectorizer.pkl', 'rb'))
model = pickle.load(open('model.pkl', 'rb'))
ps = PorterStemmer()
# Text preprocessing function
def transform_text(text):
text = text.lower()
text = nltk.word_tokenize(text)
y = []
for i in text:
if i.isalnum():
y.append(i)
text = y[:]
y.clear()
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text = y[:]
y.clear()
for i in text:
y.append(ps.stem(i))
return " ".join(y)
# Prediction endpoint
@app.route('/predict', methods=['POST'])
def predict():
data = request.get_json(force=True)
text = data['text']
transformed_sms = transform_text(text)
vector_input = tfidf.transform([transformed_sms])
result = int(model.predict(vector_input)[0]) # Convert result to integer
return jsonify({'result': result})
if __name__ == '__main__':
app.run(debug=True)