-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_processing.py
77 lines (63 loc) · 2.69 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
import matplotlib.pyplot as plt
# Image class comes from a package called pillow
# PIL used as the format for passing images into torchvision
def chained_transformation():
preprocess = transforms.Compose([transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010))])
return preprocess
def normalize_testset():
normalized = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010))])
return normalized
def load_cifar10():
preprocess = chained_transformation()
normalized = normalize_testset()
trainset = torchvision.datasets.CIFAR10(root='./CIFAR10', train=True,
download=True,
transform=preprocess)
testset = torchvision.datasets.CIFAR10(root='./CIFAR10', train=False,
download=True,
transform=normalized)
return trainset, testset
def load_test_image(image_path):
image = Image.open(image_path)
image.show()
image = image.resize((32, 32))
preprocess = normalize_testset()
img_tensor = preprocess(image)
return img_tensor
def batch_data(trainset, testset, batch_size=4):
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)
return trainloader, testloader
def test_loading(trainloader, classes):
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
# show images
imshow(torchvision.utils.make_grid(images))
def main():
trainset, testset = load_cifar10()
trainloader, testloader = batch_data(trainset, testset)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
test_loading(trainloader, classes)
if __name__ == '__main__':
main()