-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest.py
319 lines (267 loc) · 15.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
import json
import torch
import numpy
import logging
import random
from tqdm import tqdm
from torch import Tensor
from torch.nn import functional as F
from collections import defaultdict
from utils.dataloader import make_loader
def top_k_top_p_filtering(
logits: Tensor,
top_k: int = 0,
top_p: float = 1.0,
filter_value: float = -float("Inf"),
min_tokens_to_keep: int = 1,
) -> Tensor:
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = filter_value
return logits
def get_example_inputs(model,tokenizer,prompt_text,device):
num_attention_heads = model.config.n_head
hidden_size = model.config.n_embd
num_layer = model.config.n_layer
tokenizer.padding_side = "left"
encodings_dict = tokenizer.batch_encode_plus(prompt_text, padding=True)
input_ids = torch.tensor(encodings_dict['input_ids'], dtype=torch.int64)
attention_mask = torch.tensor(encodings_dict['attention_mask'], dtype=torch.float32)
position_ids = (attention_mask.long().cumsum(-1) - 1)
position_ids.masked_fill_(position_ids < 0, 0)
#Empty Past State for generating first word
empty_past = []
batch_size = input_ids.size(0)
sequence_length = input_ids.size(1)
past_shape = [2, batch_size, num_attention_heads, 0, hidden_size // num_attention_heads]
for i in range(num_layer):
empty_past.append(torch.empty(past_shape).type(torch.float32).to(device))
return input_ids.to(device), attention_mask.to(device), position_ids.to(device), empty_past
def test_generation_GPT2BATCH(model, tokenizer, input_text, device, do_sample=False, temperature=1.0,top_k=0,top_p=0,max_length=30, task_id=-1):
eos_token_id = tokenizer.eos_token_id
input_ids, attention_mask, position_ids, past = get_example_inputs(model,tokenizer,input_text,device)
batch_size = input_ids.size(0)
has_eos = torch.zeros(batch_size, dtype=torch.bool).to(device)
all_token_ids = input_ids.clone()
for step in range(max_length):
if task_id == -1:
outputs = model(input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past)
else:
outputs = model(input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past, task_id=task_id)
next_token_logits = outputs[0][:, -1, :]
if do_sample:
# Temperature (higher temperature => more likely to sample low probability tokens)
if temperature != 1.0:
next_token_logits = next_token_logits / temperature
# Top-p/top-k filtering
next_token_logscores = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
# Sample
probs = F.softmax(next_token_logscores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
# Greedy decoding
next_tokens = torch.argmax(next_token_logits, dim=-1)
has_eos = has_eos | (next_tokens == eos_token_id)
tokens_to_add = next_tokens.masked_fill(has_eos, eos_token_id)
all_token_ids = torch.cat([all_token_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
# Update input_ids, attention_mask, position_ids and past
input_ids = tokens_to_add.clone().detach().reshape([batch_size, 1]).to(device)
position_ids = (position_ids[:,-1] + 1).reshape(batch_size,1)
attention_mask = torch.cat([attention_mask, torch.ones([batch_size, 1]).type_as(attention_mask)], 1).to(device)
past = list(outputs[1]) # past in torch output is tuple
if torch.all(has_eos):
break
responses = []
responses_plain = []
for i, output in enumerate(all_token_ids):
responses_plain.append(tokenizer.decode(output, skip_special_tokens=True))
res = tokenizer.decode(output, skip_special_tokens=True)
responses.append(res[res.find("[SOS]"):].replace("[SOS]","").strip())
return responses, responses_plain
def generate_sample_prev_task(args,model,tokenizer,dataset_dic,task_id_so_far,number_of_sample,time,task_id_adpt=-1):
# device = torch.device(f"cuda:{args.GPU[0]}")
device = torch.device(f"cuda:0")
model.to(device)
model.eval()
## notice that this sample is just to have the data struct
temp_aug_mem = random.sample(dataset_dic["['sgd_restaurants']"],min(len(dataset_dic["['sgd_restaurants']"]),number_of_sample))
temp_aug_sam = random.sample(dataset_dic["['sgd_restaurants']"],min(len(dataset_dic["['sgd_restaurants']"]),number_of_sample))
with torch.no_grad():
if "gpt2" in args.model_checkpoint: ## this works only with GPT2
sample_list = []
for i in range(int(number_of_sample/(args.valid_batch_size))+1):
if(i%2==0 or args.task_type!="E2E"): # sample on batch with and one without API call
input_batch = [f"[{str(eval(task_id_so_far)[0])}]" for _ in range(args.valid_batch_size)]
else:
input_batch = [f"[{str(eval(task_id_so_far)[0])}-API]" for _ in range(args.valid_batch_size)]
_, samples = test_generation_GPT2BATCH(model=model,
tokenizer=tokenizer,
input_text=input_batch,
device=device,
max_length=300,
do_sample=True,
top_p=0.9,
temperature=1.1,
task_id=task_id_adpt)
sample_list += samples
sample_list = random.sample(sample_list,min(len(sample_list),number_of_sample))
# this sample is to train the previous task generator
for i in range(len(temp_aug_mem)):
temp_aug_mem[i]["history_reply"] = f"{sample_list[i].strip()} {tokenizer.eos_token}"
# this sample is to train the previous task itself
# hence we remove the special token in input
for i in range(len(temp_aug_sam)):
samp = sample_list[i].strip()
samp = samp.replace(f"[{str(eval(task_id_so_far)[0])}]","")
samp = samp.replace(f"[{str(eval(task_id_so_far)[0])}-API]","")
temp_aug_sam[i]["history_reply"] = f"{samp} {tokenizer.eos_token}"
temp_aug = temp_aug_mem + temp_aug_sam
## save the generated data for logging
if not os.path.exists(f'{args.saving_dir}/{time}'):
os.makedirs(f'{args.saving_dir}/{time}')
with open(f'{args.saving_dir}/{time}'+f'/{task_id_so_far}_generated.json', 'w') as fp:
json.dump(temp_aug, fp, indent=4)
return temp_aug
def test_model_seq2seq(args,model,tokenizer,test_loader,time="0_['']"):
device = torch.device(f"cuda:0")
model.to(device)
model.eval()
results = []
for idx_b, batch in tqdm(enumerate(test_loader),total=len(test_loader)):
with torch.no_grad():
if "gpt2" in args.model_checkpoint:
value_batch,_ = test_generation_GPT2BATCH(model=model,
tokenizer=tokenizer,
input_text=[b+"[SOS]" for b in batch['history']],
device=device,
max_length = 100)
else:
responses = model.generate(input_ids=batch["encoder_input"].to(device),
attention_mask=batch["attention_mask"].to(device),
eos_token_id=tokenizer.eos_token_id,
max_length=100)
value_batch = tokenizer.batch_decode(responses, skip_special_tokens=True)
for idx, resp in enumerate(value_batch):
results.append({"id":batch["dial_id"][idx],"turn_id":batch["turn_id"][idx],
"dataset":batch["dataset"][idx],"task_id":batch["task_id"][idx],
"spk":batch["spk"][idx],"gold":batch["reply"][idx],
"genr":resp,"hist":batch["history"][idx]})
# if(idx_b==1): break
if not os.path.exists(f'{args.saving_dir}/{time}'):
os.makedirs(f'{args.saving_dir}/{time}')
with open(f'{args.saving_dir}/{time}'+'/generated_responses.json', 'w') as fp:
json.dump(results, fp, indent=4)
tokenizer.padding_side = "right"
def argmin(a):
return min(range(len(a)), key=lambda x: a[x])
def test_model_seq2seq_ADAPTER(args,model,tokenizer,test_loader,test_dataset,time="0_['']",max_seen_task=0):
# device = torch.device(f"cuda:{args.GPU[0]}")
device = torch.device(f"cuda:0")
model.model.to(device)
model.model.eval()
results = []
print(model.task_list_seen,len(model.task_list_seen))
range_adpt = len(model.task_list_seen)
perplexity_dict = {f'{sample["dial_id"]}_{sample["turn_id"]}_{sample["task_id"]}': [] for sample in test_dataset}
for t in range(range_adpt):
print(f"Task {t}")
for idx_b, batch in tqdm(enumerate(test_loader),total=len(test_loader)):
ppl_batch = model.compute_PPL(batch,task_id=t,device=device) ## one value per batch
for (d_id, t_id, ta_id, ppl) in zip(batch["dial_id"],batch["turn_id"],batch["task_id"],ppl_batch):
perplexity_dict[f'{d_id}_{t_id}_{ta_id}'].append(ppl)
# select the task id with the lowest perplexity (loss)
perplexity_dict_ = {}
for k,v in perplexity_dict.items():
if len(v) == range_adpt:
perplexity_dict_[k] = v
else:
print(k,v)
perplexity_dict = {k: argmin(v) for k,v in perplexity_dict_.items()}
## group by sample by predicted task id
test_dataset_by_predicted_id = defaultdict(list)
for sample in test_dataset:
if (f'{sample["dial_id"]}_{sample["turn_id"]}_{sample["task_id"]}' in perplexity_dict):
test_dataset_by_predicted_id[perplexity_dict[f'{sample["dial_id"]}_{sample["turn_id"]}_{sample["task_id"]}']].append(sample)
for k,v in test_dataset_by_predicted_id.items():
print(f"Task {k}: {len(v)}")
## create a dataloader for batch each of this
test_dataset_by_predicted_id = {k: make_loader(args,v,model.tokenizer) for k,v in test_dataset_by_predicted_id.items()}
for pred_task_id, task_loader in tqdm(test_dataset_by_predicted_id.items(),total=len(test_dataset_by_predicted_id)):
# print(f"Task Id: {task_id}")
for idx_b, batch in tqdm(enumerate(task_loader),total=len(task_loader)):
with torch.no_grad():
value_batch,_ = test_generation_GPT2BATCH(model=model.model,
tokenizer=model.tokenizer,
input_text=[b+"[SOS]" for b in batch['history']],
device=device,
max_length=100,
task_id=pred_task_id)
for idx, resp in enumerate(value_batch):
results.append({"id":batch["dial_id"][idx],"turn_id":batch["turn_id"][idx],
"dataset":batch["dataset"][idx],"task_id":batch["task_id"][idx],
"spk":batch["spk"][idx],"gold":batch["reply"][idx],
"genr":resp,"hist":batch["history"][idx],"pred_task_id":pred_task_id})
# if(idx_b==1): break
if not os.path.exists(f'{args.saving_dir}/{time}'):
os.makedirs(f'{args.saving_dir}/{time}')
with open(f'{args.saving_dir}/{time}'+'/generated_responses.json', 'w') as fp:
json.dump(results, fp, indent=4)
tokenizer.padding_side = "right"
# def test_model(args,model,tokenizer,test_loader,time=0):
# args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model.to(args.device)
# model.eval()
# results = []
# for task_id, task_loader in tqdm(test_loader.items(),total=len(test_loader)):
# # print(f"Task Id: {task_id}")
# for idx_b, batch in enumerate(task_loader):
# input_ids, _, token_type_ids = tuple(torch.tensor([batch[input_name]]).to(args.device) for input_name in MODEL_INPUTS)
# with torch.no_grad():
# response = generate(args,model,tokenizer,input_ids,token_type_ids)
# results.append({"id":batch["dial_id"],"turn_id":batch["turn_id"],
# "dataset":batch["dataset"],"task_id":task_id,
# "spk":batch["spk"],"gold":batch["row_reply"],
# "genr":response,"hist":batch["plain_history"]})
# if not os.path.exists(f'{args.saving_dir}/{time}'):
# os.makedirs(f'{args.saving_dir}/{time}')
# with open(f'{args.saving_dir}/{time}'+'/generated_responses.json', 'w') as fp:
# json.dump(results, fp, indent=4)
def test():
pass
# args = get_args()
# model = Seq2SeqToD(args)
# model.model.load_state_dict(torch.load(f'runs_INTENT/BEST/ADAPTER_EPC_10_LR_0.00625_BOTL_100__gpt2/'))
# args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# _, _, test_loader, (_, _) = get_data_loaders(args, tokenizer, test=True)
# train_loader, val_loader, dev_val_loader, (train_datasets, test_datasets) = get_data_loaders(args, model.tokenizer)
# print(f"Loading Model: {args.model_checkpoint}")
# model.to(args.device)
# test_model(args,model,tokenizer,test_loader)
if __name__ == "__main__":
test()