forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvhn-digit-dorefa.py
executable file
·195 lines (157 loc) · 6.49 KB
/
svhn-digit-dorefa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# File: svhn-digit-dorefa.py
# Author: Yuxin Wu <[email protected]>
import argparse
import numpy as np
import os
from tensorpack import *
from tensorpack.tfutils.symbolic_functions import *
from tensorpack.tfutils.summary import *
from tensorpack.tfutils.varreplace import remap_get_variable
import tensorflow as tf
from dorefa import get_dorefa
"""
This is a tensorpack script for the SVHN results in paper:
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
http://arxiv.org/abs/1606.06160
The original experiements are performed on a proprietary framework.
This is our attempt to reproduce it on tensorpack/tensorflow.
Accuracy:
With (W,A,G)=(1,1,4), can reach 3.1~3.2% error after 150 epochs.
With the GaussianDeform augmentor, it will reach 2.8~2.9%
(we are not using this augmentor in the paper).
With (W,A,G)=(1,2,4), error is 3.0~3.1%.
With (W,A,G)=(32,32,32), error is about 2.9%.
Speed:
30~35 iteration/s on 1 TitanX Pascal. (4721 iterations / epoch)
To Run:
./svhn-digit-dorefa.py --dorefa 1,2,4
"""
BITW = 1
BITA = 2
BITG = 4
class Model(ModelDesc):
def _get_inputs(self):
return [InputDesc(tf.float32, [None, 40, 40, 3], 'input'),
InputDesc(tf.int32, [None], 'label')]
def _build_graph(self, inputs):
image, label = inputs
is_training = get_current_tower_context().is_training
fw, fa, fg = get_dorefa(BITW, BITA, BITG)
old_get_variable = tf.get_variable
# monkey-patch tf.get_variable to apply fw
def new_get_variable(v):
name = v.op.name
# don't binarize first and last layer
if not name.endswith('W') or 'conv0' in name or 'fc' in name:
return v
else:
logger.info("Binarizing weight {}".format(v.op.name))
return fw(v)
def cabs(x):
return tf.minimum(1.0, tf.abs(x), name='cabs')
def activate(x):
return fa(cabs(x))
image = image / 256.0
with remap_get_variable(new_get_variable), \
argscope(BatchNorm, decay=0.9, epsilon=1e-4), \
argscope(Conv2D, use_bias=False, nl=tf.identity):
logits = (LinearWrap(image)
.Conv2D('conv0', 48, 5, padding='VALID', use_bias=True)
.MaxPooling('pool0', 2, padding='SAME')
.apply(activate)
# 18
.Conv2D('conv1', 64, 3, padding='SAME')
.apply(fg)
.BatchNorm('bn1').apply(activate)
.Conv2D('conv2', 64, 3, padding='SAME')
.apply(fg)
.BatchNorm('bn2')
.MaxPooling('pool1', 2, padding='SAME')
.apply(activate)
# 9
.Conv2D('conv3', 128, 3, padding='VALID')
.apply(fg)
.BatchNorm('bn3').apply(activate)
# 7
.Conv2D('conv4', 128, 3, padding='SAME')
.apply(fg)
.BatchNorm('bn4').apply(activate)
.Conv2D('conv5', 128, 3, padding='VALID')
.apply(fg)
.BatchNorm('bn5').apply(activate)
# 5
.tf.nn.dropout(0.5 if is_training else 1.0)
.Conv2D('conv6', 512, 5, padding='VALID')
.apply(fg).BatchNorm('bn6')
.apply(cabs)
.FullyConnected('fc1', 10, nl=tf.identity)())
prob = tf.nn.softmax(logits, name='output')
# compute the number of failed samples
wrong = prediction_incorrect(logits, label)
# monitor training error
add_moving_summary(tf.reduce_mean(wrong, name='train_error'))
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
cost = tf.reduce_mean(cost, name='cross_entropy_loss')
# weight decay on all W of fc layers
wd_cost = regularize_cost('fc.*/W', l2_regularizer(1e-7))
add_param_summary(('.*/W', ['histogram', 'rms']))
self.cost = tf.add_n([cost, wd_cost], name='cost')
add_moving_summary(cost, wd_cost, self.cost)
def _get_optimizer(self):
lr = tf.train.exponential_decay(
learning_rate=1e-3,
global_step=get_global_step_var(),
decay_steps=4721 * 100,
decay_rate=0.5, staircase=True, name='learning_rate')
tf.summary.scalar('lr', lr)
return tf.train.AdamOptimizer(lr, epsilon=1e-5)
def get_config():
logger.auto_set_dir()
# prepare dataset
d1 = dataset.SVHNDigit('train')
d2 = dataset.SVHNDigit('extra')
data_train = RandomMixData([d1, d2])
data_test = dataset.SVHNDigit('test')
augmentors = [
imgaug.Resize((40, 40)),
imgaug.Brightness(30),
imgaug.Contrast((0.5, 1.5)),
# imgaug.GaussianDeform( # this is slow but helpful. only use it when you have lots of cpus
# [(0.2, 0.2), (0.2, 0.8), (0.8,0.8), (0.8,0.2)],
# (40,40), 0.2, 3),
]
data_train = AugmentImageComponent(data_train, augmentors)
data_train = BatchData(data_train, 128)
data_train = PrefetchDataZMQ(data_train, 5)
augmentors = [imgaug.Resize((40, 40))]
data_test = AugmentImageComponent(data_test, augmentors)
data_test = BatchData(data_test, 128, remainder=True)
return TrainConfig(
dataflow=data_train,
callbacks=[
ModelSaver(),
InferenceRunner(data_test,
[ScalarStats('cost'), ClassificationError()])
],
model=Model(),
max_epoch=200,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='the GPU to use')
parser.add_argument('--load', help='load a checkpoint')
parser.add_argument('--dorefa',
help='number of bits for W,A,G, separated by comma. Defaults to \'1,2,4\'',
default='1,2,4')
args = parser.parse_args()
BITW, BITA, BITG = map(int, args.dorefa.split(','))
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
config = get_config()
if args.load:
config.session_init = SaverRestore(args.load)
if args.gpu:
config.nr_tower = len(args.gpu.split(','))
QueueInputTrainer(config).train()