forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-atari.py
executable file
·285 lines (240 loc) · 10 KB
/
train-atari.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: train-atari.py
# Author: Yuxin Wu <[email protected]>
import numpy as np
import os
import sys
import re
import time
import random
import uuid
import argparse
import multiprocessing
import threading
import cv2
from collections import deque
import six
from six.moves import queue
import tensorflow as tf
from tensorpack import *
from tensorpack.utils.concurrency import *
from tensorpack.utils.serialize import *
from tensorpack.utils.stats import *
from tensorpack.tfutils import symbolic_functions as symbf
from tensorpack.tfutils.gradproc import MapGradient, SummaryGradient
from tensorpack.RL import *
from simulator import *
import common
from common import (play_model, Evaluator, eval_model_multithread)
IMAGE_SIZE = (84, 84)
FRAME_HISTORY = 4
GAMMA = 0.99
CHANNEL = FRAME_HISTORY * 3
IMAGE_SHAPE3 = IMAGE_SIZE + (CHANNEL,)
LOCAL_TIME_MAX = 5
STEPS_PER_EPOCH = 6000
EVAL_EPISODE = 50
BATCH_SIZE = 128
SIMULATOR_PROC = 50
PREDICTOR_THREAD_PER_GPU = 2
PREDICTOR_THREAD = None
EVALUATE_PROC = min(multiprocessing.cpu_count() // 2, 20)
NUM_ACTIONS = None
ENV_NAME = None
def get_player(viz=False, train=False, dumpdir=None):
pl = GymEnv(ENV_NAME, dumpdir=dumpdir)
def func(img):
return cv2.resize(img, IMAGE_SIZE[::-1])
pl = MapPlayerState(pl, func)
global NUM_ACTIONS
NUM_ACTIONS = pl.get_action_space().num_actions()
pl = HistoryFramePlayer(pl, FRAME_HISTORY)
if not train:
pl = PreventStuckPlayer(pl, 30, 1)
pl = LimitLengthPlayer(pl, 40000)
return pl
common.get_player = get_player
class MySimulatorWorker(SimulatorProcess):
def _build_player(self):
return get_player(train=True)
class Model(ModelDesc):
def _get_inputs(self):
assert NUM_ACTIONS is not None
return [InputDesc(tf.float32, (None,) + IMAGE_SHAPE3, 'state'),
InputDesc(tf.int64, (None,), 'action'),
InputDesc(tf.float32, (None,), 'futurereward')]
def _get_NN_prediction(self, image):
image = image / 255.0
with argscope(Conv2D, nl=tf.nn.relu):
l = Conv2D('conv0', image, out_channel=32, kernel_shape=5)
l = MaxPooling('pool0', l, 2)
l = Conv2D('conv1', l, out_channel=32, kernel_shape=5)
l = MaxPooling('pool1', l, 2)
l = Conv2D('conv2', l, out_channel=64, kernel_shape=4)
l = MaxPooling('pool2', l, 2)
l = Conv2D('conv3', l, out_channel=64, kernel_shape=3)
l = FullyConnected('fc0', l, 512, nl=tf.identity)
l = PReLU('prelu', l)
logits = FullyConnected('fc-pi', l, out_dim=NUM_ACTIONS, nl=tf.identity) # unnormalized policy
value = FullyConnected('fc-v', l, 1, nl=tf.identity)
return logits, value
def _build_graph(self, inputs):
state, action, futurereward = inputs
logits, self.value = self._get_NN_prediction(state)
self.value = tf.squeeze(self.value, [1], name='pred_value') # (B,)
self.policy = tf.nn.softmax(logits, name='policy')
expf = tf.get_variable('explore_factor', shape=[],
initializer=tf.constant_initializer(1), trainable=False)
policy_explore = tf.nn.softmax(logits * expf, name='policy_explore')
is_training = get_current_tower_context().is_training
if not is_training:
return
log_probs = tf.log(self.policy + 1e-6)
log_pi_a_given_s = tf.reduce_sum(
log_probs * tf.one_hot(action, NUM_ACTIONS), 1)
advantage = tf.subtract(tf.stop_gradient(self.value), futurereward, name='advantage')
policy_loss = tf.reduce_sum(log_pi_a_given_s * advantage, name='policy_loss')
xentropy_loss = tf.reduce_sum(
self.policy * log_probs, name='xentropy_loss')
value_loss = tf.nn.l2_loss(self.value - futurereward, name='value_loss')
pred_reward = tf.reduce_mean(self.value, name='predict_reward')
advantage = symbf.rms(advantage, name='rms_advantage')
entropy_beta = tf.get_variable('entropy_beta', shape=[],
initializer=tf.constant_initializer(0.01), trainable=False)
self.cost = tf.add_n([policy_loss, xentropy_loss * entropy_beta, value_loss])
self.cost = tf.truediv(self.cost,
tf.cast(tf.shape(futurereward)[0], tf.float32),
name='cost')
summary.add_moving_summary(policy_loss, xentropy_loss,
value_loss, pred_reward, advantage, self.cost)
def _get_optimizer(self):
lr = symbf.get_scalar_var('learning_rate', 0.001, summary=True)
opt = tf.train.AdamOptimizer(lr, epsilon=1e-3)
gradprocs = [MapGradient(lambda grad: tf.clip_by_average_norm(grad, 0.1)),
SummaryGradient()]
opt = optimizer.apply_grad_processors(opt, gradprocs)
return opt
class MySimulatorMaster(SimulatorMaster, Callback):
def __init__(self, pipe_c2s, pipe_s2c, model):
super(MySimulatorMaster, self).__init__(pipe_c2s, pipe_s2c)
self.M = model
self.queue = queue.Queue(maxsize=BATCH_SIZE * 8 * 2)
def _setup_graph(self):
self.async_predictor = MultiThreadAsyncPredictor(
self.trainer.get_predictors(['state'], ['policy_explore', 'pred_value'],
PREDICTOR_THREAD), batch_size=15)
def _before_train(self):
self.async_predictor.start()
def _on_state(self, state, ident):
def cb(outputs):
distrib, value = outputs.result()
assert np.all(np.isfinite(distrib)), distrib
action = np.random.choice(len(distrib), p=distrib)
client = self.clients[ident]
client.memory.append(TransitionExperience(state, action, None, value=value))
self.send_queue.put([ident, dumps(action)])
self.async_predictor.put_task([state], cb)
def _on_episode_over(self, ident):
self._parse_memory(0, ident, True)
def _on_datapoint(self, ident):
client = self.clients[ident]
if len(client.memory) == LOCAL_TIME_MAX + 1:
R = client.memory[-1].value
self._parse_memory(R, ident, False)
def _parse_memory(self, init_r, ident, isOver):
client = self.clients[ident]
mem = client.memory
if not isOver:
last = mem[-1]
mem = mem[:-1]
mem.reverse()
R = float(init_r)
for idx, k in enumerate(mem):
R = np.clip(k.reward, -1, 1) + GAMMA * R
self.queue.put([k.state, k.action, R])
if not isOver:
client.memory = [last]
else:
client.memory = []
def get_config():
dirname = os.path.join('train_log', 'train-atari-{}'.format(ENV_NAME))
logger.set_logger_dir(dirname)
M = Model()
name_base = str(uuid.uuid1())[:6]
PIPE_DIR = os.environ.get('TENSORPACK_PIPEDIR', '.').rstrip('/')
namec2s = 'ipc://{}/sim-c2s-{}'.format(PIPE_DIR, name_base)
names2c = 'ipc://{}/sim-s2c-{}'.format(PIPE_DIR, name_base)
procs = [MySimulatorWorker(k, namec2s, names2c) for k in range(SIMULATOR_PROC)]
ensure_proc_terminate(procs)
start_proc_mask_signal(procs)
master = MySimulatorMaster(namec2s, names2c, M)
dataflow = BatchData(DataFromQueue(master.queue), BATCH_SIZE)
return TrainConfig(
dataflow=dataflow,
callbacks=[
ModelSaver(),
ScheduledHyperParamSetter('learning_rate', [(80, 0.0003), (120, 0.0001)]),
ScheduledHyperParamSetter('entropy_beta', [(80, 0.005)]),
ScheduledHyperParamSetter('explore_factor',
[(80, 2), (100, 3), (120, 4), (140, 5)]),
master,
StartProcOrThread(master),
PeriodicTrigger(Evaluator(EVAL_EPISODE, ['state'], ['policy']), every_k_epochs=2),
],
session_creator=sesscreate.NewSessionCreator(
config=get_default_sess_config(0.5)),
model=M,
steps_per_epoch=STEPS_PER_EPOCH,
max_epoch=1000,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--env', help='env', required=True)
parser.add_argument('--task', help='task to perform',
choices=['play', 'eval', 'train'], default='train')
args = parser.parse_args()
ENV_NAME = args.env
assert ENV_NAME
p = get_player()
del p # set NUM_ACTIONS
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if args.task != 'train':
assert args.load is not None
if args.task != 'train':
cfg = PredictConfig(
model=Model(),
session_init=SaverRestore(args.load),
input_names=['state'],
output_names=['policy'])
if args.task == 'play':
play_model(cfg)
elif args.task == 'eval':
eval_model_multithread(cfg, EVAL_EPISODE)
else:
nr_gpu = get_nr_gpu()
if nr_gpu > 0:
if nr_gpu > 1:
predict_tower = list(range(nr_gpu))[-nr_gpu // 2:]
else:
predict_tower = [0]
PREDICTOR_THREAD = len(predict_tower) * PREDICTOR_THREAD_PER_GPU
train_tower = list(range(nr_gpu))[:-nr_gpu // 2] or [0]
logger.info("[BA3C] Train on gpu {} and infer on gpu {}".format(
','.join(map(str, train_tower)), ','.join(map(str, predict_tower))))
trainer = AsyncMultiGPUTrainer
else:
logger.warn("Without GPU this model will never learn! CPU is only useful for debug.")
nr_gpu = 0
PREDICTOR_THREAD = 1
predict_tower, train_tower = [0], [0]
trainer = QueueInputTrainer
config = get_config()
if args.load:
config.session_init = SaverRestore(args.load)
config.tower = train_tower
config.predict_tower = predict_tower
trainer(config).train()