forked from amannntank/Competitive-Coding-Library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSweep Line: Intersecting Line Segments.cpp
224 lines (192 loc) · 4.17 KB
/
Sweep Line: Intersecting Line Segments.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/*Returns pair of indices of any two intersecting line segments if there exist intersecting line segments,
and (-1, -1) if no line segments intersect.*/
const double EPS = 1e-15;
struct Point
{
double x, y;
Point()
{
x = 0, y = 0;
}
Point(double _x, double _y)
{
x = _x, y = _y;
}
bool between(Point &P, Point &Q)
{
bool checkX = x < max(P.x, Q.x) + EPS && x + EPS > min(P.x, Q.x);
bool checkY = y < max(P.y, Q.y) + EPS && y + EPS > min(P.y, Q.y);
return checkX && checkY;
}
Point operator+ (const Point& P) const
{
return Point(x + P.x, y + P.y);
}
Point operator- (const Point& P) const
{
return Point(x - P.x, y - P.y);
}
bool operator< (Point &o)
{
if(abs(x - o.x) > EPS)
return x < o.x;
return y < o.y;
}
};
struct Line
{
double a, b, c;
Line(Point P, Point Q)
{
if(abs(P.x - Q.x) < EPS)
{
a = 1;
b = 0;
c = -P.x;
}
else
{
a = (P.y - Q.y) / (Q.x - P.x);
b = 1.0;
c = -(a * P.x + P.y);
}
}
bool parallel(Line l)
{
return abs(a - l.a) < EPS && abs(b - l.b) < EPS;
}
Point intersect(Line l)
{
if(parallel(l))
return Point();
double x = (b * l.c - c * l.b) / (a * l.b - b * l.a);
double y;
if(abs(b) < EPS)
y = -l.a * x - l.c;
else
y = -a * x - c;
}
};
struct Segment
{
Point P, Q;
int idx;
Segment()
{
idx = -1;
}
Segment(double x1, double y1, double x2, double y2, int _idx)
{
P = Point(x1, y1);
Q = Point(x2, y2);
idx = _idx;
}
Segment(Point _P, Point _Q, int _idx)
{
P = _P, Q = _Q, idx = _idx;
}
Point intersect(Segment ls)
{
Line l1 = Line(P, Q);
Line l2 = Line(ls.P, ls.Q);
if(l1.parallel(l2))
return Point();
Point c = l1.intersect(l2);
return c.between(P, Q) && c.between(ls.P, ls.Q) ? c : Point();
}
double get_y(double &x) const
{
if(abs(P.x - Q.x)<EPS)
return P.y;
return P.y + (Q.y - P.y) * (x - P.x) / (Q.x - P.x);
}
};
struct Event
{
double x;
int type, idx; //type - 1: Add, -1: Remove
Event() {}
Event(double x, int type, int idx) : x(x), type(type), idx(idx) {}
bool operator< (const Event &e) const
{
if(abs(x - e.x) > EPS)
return x < e.x;
if(type != e.type)
return type > e.type;
return idx < e.idx;
}
};
int vec(const Point &a, const Point &b, const Point &c)
{
double s = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
if(abs(s) < EPS)
return 0;
return s > 0 ? 1 : -1;
}
bool intersect1D(double l1, double r1, double l2, double r2)
{
if(l1 > r1)
swap(l1, r1);
if(l2 > r2)
swap(l2, r2);
return max(l1, l2) <= min(r1, r2) + EPS;
}
bool intersect(const Segment &a, const Segment &b)
{
return intersect1D(a.P.x, a.Q.x, b.P.x, b.Q.x) &&
intersect1D(a.P.y, a.Q.y, b.P.y, b.Q.y) &&
vec(a.P, a.Q, b.P) * vec(a.P, a.Q, b.Q) <= 0 &&
vec(b.P, b.Q, a.P) * vec(b.P, b.Q, a.Q) <=0;
}
bool operator<(const Segment& a, const Segment& b)
{
double x = max(min(a.P.x, a.Q.x), min(b.P.x, b.Q.x));
return a.get_y(x) < b.get_y(x) - EPS;
}
set<Segment> s;
vector<set<Segment>::iterator > where;
set<Segment>::iterator prev(set<Segment>::iterator it)
{
return it == s.begin() ? s.end() : --it;
}
set<Segment>::iterator next(set<Segment>::iterator it)
{
return ++it;
}
pair<int, int> solve(const vector<Segment> &v)
{
int n = v.size();
set<Event> events;
for(int i=0;i<n;i++)
{
events.insert(Event(min(v[i].P.x, v[i].Q.x), +1, i));
events.insert(Event(max(v[i].P.x, v[i].Q.x), -1, i));
}
s.clear();
where.resize(n);
while(events.size())
{
auto E = *events.begin();
events.erase(E);
int idx = E.idx;
if(E.type == +1)
{
set<Segment>::iterator nxt = s.lower_bound(v[idx]), prv = prev(nxt);
if(nxt != s.end() && intersect(*nxt, v[idx]))
return make_pair(nxt->idx, v[idx].idx);
if(prv != s.end() && intersect(*prv, v[idx]))
return make_pair(prv->idx, v[idx].idx);
where[idx] = s.insert(nxt, v[idx]);
}
else
{
set<Segment>::iterator nxt = next(where[idx]), prv = prev(where[idx]);
if(nxt != s.end() && prv != s.end() && intersect(*nxt, *prv))
return make_pair(prv->idx, nxt->idx);
s.erase(where[idx]);
}
}
return make_pair(-1, -1);
}
//Problem 1: http://acm.timus.ru/problem.aspx?space=1&num=1469
//Solution 1: http://p.ip.fi/hRY9