-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCRF.py
138 lines (113 loc) · 3.63 KB
/
CRF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from itertools import chain
import nltk
import eli5
import sklearn
import scipy.stats
from sklearn.metrics import make_scorer
from sklearn.cross_validation import cross_val_score
from sklearn.grid_search import RandomizedSearchCV
import eli5
import sklearn_crfsuite
from sklearn_crfsuite import scorers
from sklearn_crfsuite import metrics
import warnings
warnings.filterwarnings('ignore') # "error", "ignore", "always", "default", "module" or "once"
#function to return words .
def get_sentences_and_NER(filename):
sentence = []
sentences = []
for line in filename:
if (('-DOCSTART-') in line):
continue
line = line.split(' ')
#print(len(line))
if(len(line) > 1):
tuple = (line[0], line[1], line[3].replace('\n',''))
sentence.append(tuple)
if(len(line) == 1):
sentences.append(sentence)
sentence = []
return sentences
def word2features(sent, i):
word = sent[i][0]
postag = sent[i][1]
features = {
'bias': 1.0,
'word.lower()': word.lower(),
'word[-3:]': word[-3:],
'word[-2:]': word[-2:],
'word.isupper()': word.isupper(),
'word.istitle()': word.istitle(),
'word.isdigit()': word.isdigit(),
'postag': postag,
'postag[:2]': postag[:2],
}
if i > 0:
word1 = sent[i - 1][0]
postag1 = sent[i - 1][1]
features.update({
'-1:word.lower()': word1.lower(),
'-1:word.istitle()': word1.istitle(),
'-1:word.isupper()': word1.isupper(),
'-1:postag': postag1,
'-1:postag[:2]': postag1[:2],
})
else:
features['BOS'] = True
if i < len(sent) - 1:
word1 = sent[i + 1][0]
postag1 = sent[i + 1][1]
features.update({
'+1:word.lower()': word1.lower(),
'+1:word.istitle()': word1.istitle(),
'+1:word.isupper()': word1.isupper(),
'+1:postag': postag1,
'+1:postag[:2]': postag1[:2],
})
else:
features['EOS'] = True
return features
def sent2features(sent):
return [word2features(sent, i) for i in range(len(sent))]
def sent2labels(sent):
return [label for token, postag, label in sent]
def sent2tokens(sent):
return [token for token, postag, label in sent]
#Load the training file into train_sents, each word in a setnece (word, POS, NER)
file_train = open('Datasets/conll2003/eng.train', 'r')
train_sents = get_sentences_and_NER(file_train)
print(train_sents[1])
#Load the test data into test_sents, each word in a setnece (word, POS, NER)
file_test = open('Datasets/conll2003/eng.testa', 'r')
test_sents = get_sentences_and_NER(file_test)
#get training data features, and set NER as the output
X_train = [sent2features(s) for s in train_sents]
y_train = [sent2labels(s) for s in train_sents]
#get test data features, and set NER as the test output
X_test = [sent2features(s) for s in test_sents]
y_test = [sent2labels(s) for s in test_sents]
#training
crf = sklearn_crfsuite.CRF(
algorithm='lbfgs',
c1=0.1,
c2=0.1,
max_iterations=20,
all_possible_transitions=False,
)
crf.fit(X_train, y_train)
labels = list(crf.classes_)
#labels.remove('O')
print(labels)
#prediction step
y_pred = crf.predict(X_test)
metrics.flat_f1_score(y_test, y_pred,
average='weighted', labels=labels)
sorted_labels = sorted(
labels,
key=lambda name: (name[1:], name[0])
)
print(metrics.flat_classification_report(
y_test, y_pred, labels=sorted_labels, digits=3
))
#Check the best features
print(eli5.format_as_text((eli5.explain_weights(crf, top=30))))