-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_traverse.py
259 lines (229 loc) · 11.9 KB
/
train_traverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import pickle
import keras
import numpy as np
from helpers.data_generator import process_data, DataGenerator
from helpers.hyperparam_helpers import make_bash_scripts
from helpers.custom_losses import denorm_loss, hinge_mse_loss, percent_baseline_error, baseline_MAE
from helpers.custom_losses import percent_correct_sign, baseline_MAE
from models.LSTMConv2D import get_model_lstm_conv2d, get_model_simple_lstm
from models.LSTMConv2D import get_model_linear_systems, get_model_conv2d
from models.LSTMConv1D import build_lstmconv1d_joe, build_dumb_simple_model
from utils.callbacks import CyclicLR, TensorBoardWrapper
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from time import strftime, localtime
import tensorflow as tf
from keras import backend as K
from collections import OrderedDict
import os
import sys
import itertools
def main(scenario_index=-2):
num_cores = 16
ngpu = 0
config = tf.ConfigProto(intra_op_parallelism_threads=4*num_cores,
inter_op_parallelism_threads=4*num_cores,
allow_soft_placement=True,
device_count={'CPU': 1,
'GPU': ngpu})
session = tf.Session(config=config)
K.set_session(session)
scenarios_dict = OrderedDict()
scenarios_dict['models']= [{'model_type': 'simple_dense', 'epochs': 50},
{'model_type': 'conv2d', 'epochs': 100}]
scenarios_dict['actuators_scalars'] = [{'actuator_names':
['pinj', 'curr', 'tinj', 'gasA'],
'scalar_input_names':[]},
{'actuator_names':
['pinj', 'curr', 'tinj', 'gasA',
'gasB', 'gasC', 'gasD'],
'scalar_input_names':[]},
{'actuator_names':
['pinj', 'curr', 'tinj',
'target_density', 'gas_feedback'],
'scalar_input_names':['density_estimate']}]
scenarios_dict['flattop']= [{'flattop_only': True,
'processed_filename_base':
'/scratch/gpfs/jabbate/data_60_ms_flattop_randomized/'},
{'flattop_only': False,
'processed_filename_base':
'/scratch/gpfs/jabbate/data_60_ms_include_rampup_randomized/'}]
scenarios_dict['inputs']= [{'input_profile_names': ['temp','dens']},
{'input_profile_names': ['thomson_dens_EFITRT1',
'thomson_temp_EFITRT1']}]
scenarios_dict['targets'] = [{'target_profile_names': ['temp','dens']}]
scenarios_dict['profile_downsample'] = [{'profile_downsample': 2}]
scenarios_dict['std_activation'] = [{'std_activation': 'relu'}]
scenarios_dict['hinge_weight'] = [{'hinge_weight': 50}]
scenarios_dict['mse_weight_edge'] = [{'mse_weight_edge': np.sqrt(10)}]
scenarios_dict['mse_weight_power'] = [{'mse_weight_power': 2}]
scenarios_dict['batch_size'] = [{'batch_size': 128}]
scenarios_dict['predict_deltas'] = [{'predict_deltas': True},
{'predict_deltas': False}]
checkpt_dir = os.path.expanduser("~/run_results/")
scenarios = []
runtimes = []
for scenario in itertools.product(*list(scenarios_dict.values())):
foo = {k: v for d in scenario for k, v in d.items()}
scenarios.append(foo)
if foo['model_type'] == 'conv2d':
runtimes.append(5*128/foo['batch_size']*foo['epochs'])
elif foo['model_type'] == 'simple_dense':
runtimes.append(1*128/foo['batch_size']*foo['epochs'])
elif foo['model_type'] == 'conv1d':
runtimes.append(3.5*128/foo['batch_size']*foo['epochs'])
else:
runtimes.append(4*60)
num_scenarios = len(scenarios)
if scenario_index == -1:
make_bash_scripts(num_scenarios, checkpt_dir, num_cores, ngpu, runtimes)
print('Created Driver Scripts in ' + checkpt_dir)
for i in range(num_scenarios):
os.system('sbatch {}'.format(os.path.join(
checkpt_dir, 'driver' + str(i) + '.sh')))
print('Jobs submitted, exiting')
return
# data_60_ms/' #full_data_include_current_ramps'
processed_filename_base = '/scratch/gpfs/jabbate/data_60_ms/'
# with tf.device('/cpu:0'):
with open(os.path.join(processed_filename_base, 'train.pkl'), 'rb') as f:
traindata = pickle.load(f)
with open(os.path.join(processed_filename_base, 'val.pkl'), 'rb') as f:
valdata = pickle.load(f)
with open(os.path.join(processed_filename_base, 'param_dict.pkl'), 'rb') as f:
param_dict = pickle.load(f)
globals().update(param_dict)
print('Data Loaded \n')
actuator_names = ['pinj', 'curr', 'tinj', 'gasA']
input_profile_names = ['temp', 'dens']
target_profile_names = ['temp', 'dens']
scalar_input_names = []
profile_downsample = 2
mse_weight_power = 2
mse_weight_edge = np.sqrt(10)
model_type = 'simple_dense'
predict_deltas = True
std_activation = 'relu'
hinge_weight = 50
batch_size = 128
epochs = 50
verbose = 1
profile_length = int(np.ceil(65/profile_downsample))
mse_weight_vector = np.linspace(
1, mse_weight_edge, profile_length)**mse_weight_power
if scenario_index >= 0:
globals().update(scenarios[scenario_index])
models = {'simple_lstm': get_model_simple_lstm,
'lstm_conv2d': get_model_lstm_conv2d,
'conv2d': get_model_conv2d,
'linear_systems': get_model_linear_systems,
'conv1d': build_lstmconv1d_joe,
'simple_dense': build_dumb_simple_model}
runname = 'model-' + model_type + \
'_profiles-' + '-'.join(input_profile_names) + \
'_act-' + '-'.join(actuator_names) + \
'_targ-' + '-'.join(target_profile_names) + \
'_profLB-' + str(profile_lookback) + \
'_actLB-' + str(actuator_lookback) +\
'_norm-' + normalization_method + \
'_activ-' + std_activation + \
'_nshots-' + str(nshots) + \
'_ftop-' + str(flattop_only) + \
strftime("_%d%b%y-%H-%M", localtime())
if scenario_index >= 0:
runname += '_Scenario-' + str(scenario_index)
print(runname)
train_generator = DataGenerator(traindata, batch_size, input_profile_names,
actuator_names, target_profile_names, scalar_input_names,
lookbacks, lookahead,
predict_deltas, profile_downsample)
val_generator = DataGenerator(valdata, batch_size, input_profile_names,
actuator_names, target_profile_names, scalar_input_names,
lookbacks, lookahead,
predict_deltas, profile_downsample)
print('Made Generators \n')
model_kwargs = {}
# with tf.device('/cpu:0'):
model = models[model_type](input_profile_names, target_profile_names,
scalar_input_names, actuator_names, lookbacks,
lookahead, profile_length, std_activation, **model_kwargs)
if ngpu>1:
parallel_model = keras.utils.multi_gpu_model(model, gpus=2)
optimizer = keras.optimizers.Adagrad()
loss = {}
metrics = {}
for sig in target_profile_names:
loss.update({'target_'+sig: hinge_mse_loss(sig, model, hinge_weight,
mse_weight_vector, predict_deltas)})
metrics.update({'target_'+sig: []})
metrics['target_'+sig].append(denorm_loss(sig, model, normalization_dict[sig],
keras.metrics.MAE, predict_deltas))
metrics['target_'+sig].append(percent_correct_sign(sig, model,
predict_deltas))
metrics['target_' +
sig].append(percent_baseline_error(sig, model, predict_deltas))
callbacks = []
if ngpu<=1:
callbacks.append(ModelCheckpoint(checkpt_dir+runname+'.h5', monitor='val_loss',
verbose=0, save_best_only=True,
save_weights_only=False, mode='auto', period=1))
callbacks.append(ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=10,
verbose=1, mode='auto', min_delta=0.001,
cooldown=1, min_lr=0))
steps_per_epoch = len(train_generator)
print('Train generator length: {}'.format(len(train_generator)))
val_steps = len(val_generator)
if ngpu>1:
parallel_model.compile(optimizer, loss, metrics)
print('Model Compiled \n')
history = parallel_model.fit_generator(train_generator, steps_per_epoch=steps_per_epoch,
epochs=epochs, callbacks=callbacks,
validation_data=val_generator, validation_steps=val_steps, verbose=1) # ,
else:
print('Model Compiled \n')
model.compile(optimizer, loss, metrics)
history = model.fit_generator(train_generator, steps_per_epoch=steps_per_epoch,
epochs=epochs, callbacks=callbacks,
validation_data=val_generator, validation_steps=val_steps, verbose=1) # ,
analysis_params = {'rawdata': rawdata_path,
'flattop_only': flattop_only,
'model_type': model_type,
'input_profile_names': input_profile_names,
'actuator_names': actuator_names,
'target_profile_names': target_profile_names,
'scalar_input_names': scalar_input_names,
'sig_names': sig_names,
'predict_deltas': predict_deltas,
'profile_lookback': profile_lookback,
'actuator_lookback': actuator_lookback,
'lookbacks': lookbacks,
'lookahead': lookahead,
'profile_length': profile_length,
'profile_downsample': profile_downsample,
'std_activation': std_activation,
'window_length': window_length,
'window_overlap': window_overlap,
'sample_step': sample_step,
'normalization_method': normalization_method,
'uniform_normalization': uniform_normalization,
'normalization_params': normalization_dict,
'train_frac': train_frac,
'val_frac': val_frac,
'nshots': nshots,
'mse_weight_vector': mse_weight_vector,
'mse_weight_edge': mse_weight_edge,
'mse_weight_power': mse_weight_power,
'hinge_weight': hinge_weight,
'batch_size': batch_size,
'epochs': epochs,
'runname': runname,
'model_path': checkpt_dir + runname + '.h5',
'history': history.history,
'history_params': history.params}
with open(checkpt_dir + runname + '_params.pkl', 'wb+') as f:
pickle.dump(analysis_params, f)
print('Saved Analysis params')
if __name__ == '__main__':
if len(sys.argv) > 1:
main(int(sys.argv[1]))
else:
main()