Skip to content

Latest commit

 

History

History
32 lines (27 loc) · 1.54 KB

README.md

File metadata and controls

32 lines (27 loc) · 1.54 KB

RPC_TALKER

A directory which talks to model containers via RPC system provided by CLIPPER. Only heartbeats messages implemented so far.

Build Docker file for Clipper + Pytorch + CUDA

Follow the following steps -

  1. git clone https://github.com/alindkhare/clipper.git
  2. cd clipper/
  3. git checkout alind/cuda_pytorch1.2
  4. cd examples/image_query
  5. sh build_pytorch1.2_container.sh

This will build the docker image with the tag clipper/cuda10-pytorch1.2-py3.6-container .

Running the docker file and setting up ENV variables

Type the following commands -

  1. In RPC_TALKER directory, run file save_model_and_func.py by the command python save_model_and_func.py
  2. Note down the directory path printed while running this file (let's call this DIR). Keep this terminal tab open (call this tab A).
  3. In a new terminal window (call this tab B), type - docker run --runtime=nvidia -it --network host --name my-clipper clipper/cuda10-pytorch36-container bash
  4. On tab A, fire the following commands -
    1. docker cp rpc.py my-clipper:/container/
    2. docker cp DIR/* my-clipper:/model/
  5. On tab B, you are inside container. Do the following -
    1. export CLIPPER_MODEL_VERSION=v1
    2. export CLIPPER_INPUT_TYPE=bytes
    3. export CLIPPER_PORT=7999
    4. export CLIPPER_MODEL_PATH=/model/
    5. export CLIPPER_MODEL_NAME=r50

Running the RPC Talker

  1. On TAB A, start RPC_talker by command - python RPC_talker.py
  2. On TAB B (the docker container), run command - sh container_entry.sh "pytorch-container" pytorch_container.py