diff --git a/.readthedocs.yaml b/.readthedocs.yaml index bb76f60cc..a023e0bfa 100644 --- a/.readthedocs.yaml +++ b/.readthedocs.yaml @@ -1,11 +1,15 @@ version: 2 +build: + os: ubuntu-22.04 + tools: + python: "3.7" + sphinx: configuration: docs/source/conf.py python: - version: "3.7" install: - requirements: requirements/runtime.txt - requirements: requirements/docs.txt diff --git a/easy_rec/python/layers/common_layers.py b/easy_rec/python/layers/common_layers.py index e6169a896..68ecf37f5 100644 --- a/easy_rec/python/layers/common_layers.py +++ b/easy_rec/python/layers/common_layers.py @@ -171,7 +171,7 @@ def call(self, config, training): ln_name = self._group_name + 'f_%d' % i fea = layer_norm(fea, name=ln_name, reuse=self._reuse) if do_dropout and output_feature_list: - fea = self.dropout.apply(fea, training=training) + fea = self.dropout.call(fea, training=training) if do_feature_dropout: fea = tf.div(fea, keep_prob) * mask[i] feature_list[i] = fea @@ -179,7 +179,9 @@ def call(self, config, training): features = tf.concat(feature_list, axis=-1) if do_dropout and not do_feature_dropout: - features = self.dropout.apply(features, training=training) + features = self.dropout.call(features, training=training) + if features.shape.ndims == 3 and int(features.shape[0]) == 1: + features = tf.squeeze(features, axis=0) if config.only_output_feature_list: return feature_list diff --git a/easy_rec/python/tools/feature_selection.py b/easy_rec/python/tools/feature_selection.py index 05b193897..6d9f59911 100644 --- a/easy_rec/python/tools/feature_selection.py +++ b/easy_rec/python/tools/feature_selection.py @@ -106,7 +106,11 @@ def _feature_dim_dropout_ratio(self): group_name = feature_group.group_name logit_p_name = 'logit_p' if group_name == 'all' else 'logit_p_%s' % group_name - logit_p = reader.get_tensor(logit_p_name) + try: + logit_p = reader.get_tensor(logit_p_name) + except Exception: + print('get `logit_p` failed, try to get `backbone/logit_p`') + logit_p = reader.get_tensor('backbone/' + logit_p_name) feature_dims_importance = tf.sigmoid(logit_p) with tf.Session() as sess: feature_dims_importance = feature_dims_importance.eval(session=sess)