forked from shjo-april/PuzzleCAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_affinity_labels.py
118 lines (89 loc) · 4.22 KB
/
make_affinity_labels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright (C) 2020 * Ltd. All rights reserved.
# author : Sanghyeon Jo <[email protected]>
import os
import sys
import copy
import shutil
import random
import argparse
import numpy as np
import imageio
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from core.puzzle_utils import *
from core.networks import *
from core.datasets import *
from tools.general.io_utils import *
from tools.general.time_utils import *
from tools.general.json_utils import *
from tools.ai.log_utils import *
from tools.ai.demo_utils import *
from tools.ai.optim_utils import *
from tools.ai.torch_utils import *
from tools.ai.evaluate_utils import *
from tools.ai.augment_utils import *
from tools.ai.randaugment import *
parser = argparse.ArgumentParser()
###############################################################################
# Dataset
###############################################################################
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--data_dir', default='../VOCtrainval_11-May-2012/', type=str)
###############################################################################
# Inference parameters
###############################################################################
parser.add_argument('--experiment_name', default='resnet50@seed=0@bs=16@ep=5@nesterov@train@scale=0.5,1.0,1.5,2.0', type=str)
parser.add_argument('--domain', default='train', type=str)
parser.add_argument('--fg_threshold', default=0.30, type=float)
parser.add_argument('--bg_threshold', default=0.05, type=float)
if __name__ == '__main__':
###################################################################################
# Arguments
###################################################################################
args = parser.parse_args()
experiment_name = args.experiment_name
pred_dir = f'./experiments/predictions/{experiment_name}/'
aff_dir = create_directory('./experiments/predictions/{}@aff_fg={:.2f}_bg={:.2f}/'.format(experiment_name, args.fg_threshold, args.bg_threshold))
set_seed(args.seed)
log_func = lambda string='': print(string)
###################################################################################
# Transform, Dataset, DataLoader
###################################################################################
# for mIoU
meta_dic = read_json('./data/VOC_2012.json')
dataset = VOC_Dataset_For_Making_CAM(args.data_dir, args.domain)
#################################################################################################
# Convert
#################################################################################################
eval_timer = Timer()
length = len(dataset)
for step, (ori_image, image_id, _, _) in enumerate(dataset):
png_path = aff_dir + image_id + '.png'
if os.path.isfile(png_path):
continue
# load
image = np.asarray(ori_image)
cam_dict = np.load(pred_dir + image_id + '.npy', allow_pickle=True).item()
ori_h, ori_w, c = image.shape
keys = cam_dict['keys']
cams = cam_dict['hr_cam']
# 1. find confident fg & bg
fg_cam = np.pad(cams, ((1, 0), (0, 0), (0, 0)), mode='constant', constant_values=args.fg_threshold)
fg_cam = np.argmax(fg_cam, axis=0)
fg_conf = keys[crf_inference_label(image, fg_cam, n_labels=keys.shape[0])]
bg_cam = np.pad(cams, ((1, 0), (0, 0), (0, 0)), mode='constant', constant_values=args.bg_threshold)
bg_cam = np.argmax(bg_cam, axis=0)
bg_conf = keys[crf_inference_label(image, bg_cam, n_labels=keys.shape[0])]
# 2. combine confident fg & bg
conf = fg_conf.copy()
conf[fg_conf == 0] = 255
conf[bg_conf + fg_conf == 0] = 0
imageio.imwrite(png_path, conf.astype(np.uint8))
sys.stdout.write('\r# Convert [{}/{}] = {:.2f}%, ({}, {})'.format(step + 1, length, (step + 1) / length * 100, (ori_h, ori_w), conf.shape))
sys.stdout.flush()
print()