-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvis_contacts.py
81 lines (59 loc) · 2.07 KB
/
vis_contacts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from collections import OrderedDict
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from bert_fold.dataset import ProteinNetDataset, prepare_targets
from bert_fold.modules.bert_fold import BertFold
from const import DATA_PROTEIN_NET_DIR
def load_model() -> BertFold:
model = BertFold(pretrained=False)
# Update here for your trained weight.
# ProtBert, seq only
# ckpt = torch.load('../experiments/protein_supervised/1599530879/checkpoints/last.ckpt')
# ProtBert-BFD, seq and evo
ckpt = torch.load('/mnt/ssdnfs/vfa-ruby/akirasosa/experiments/bert_fold/1603422208/checkpoints/last.ckpt')
if any(k.startswith('ema_model') for k in ckpt['state_dict'].keys()):
prefix = 'ema_model'
else:
prefix = 'model'
new_dict = OrderedDict()
for k, v in ckpt['state_dict'].items():
if not k.startswith(f'{prefix}.'):
continue
new_dict[k[len(f'{prefix}.'):]] = v
info = model.load_state_dict(new_dict, strict=False)
print(info)
return model
# %%
if __name__ == '__main__':
# %%
df = pd.read_parquet(DATA_PROTEIN_NET_DIR / 'casp12/testing.pqt')
dataset = ProteinNetDataset(df)
# %%
model = load_model().eval().cpu()
# %%
data = dataset[np.random.randint(len(dataset))]
batch = ProteinNetDataset.collate([data])
targets = prepare_targets(batch)
pdb_id = data[-1]
print(pdb_id[3:7])
with torch.no_grad():
out = model.forward(batch, targets)
# %%
seq_len = len(data[0]) - 2
_, idx_i, idx_j = targets.dist.indices
y_true = targets.dist.values.numpy()
y_hat = out.y_hat[0][0].numpy()
mat_true = np.full((seq_len, seq_len), np.nan)
mat_true[idx_i, idx_j] = y_true
mat_true[idx_j, idx_i] = y_true
mat_pred = y_hat
fig, axes = plt.subplots(nrows=1, ncols=2)
fig.suptitle(f'Pairwise distance prediction: PDB {pdb_id}')
axes[0].matshow(mat_true)
axes[0].set_title('Ground Truth')
axes[1].matshow(mat_pred)
axes[1].set_title('Prediction')
plt.show()
print(out.mae_l_8)