-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
298 lines (252 loc) · 12.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import time
from pathlib import Path
import argparse
from torch.optim.lr_scheduler import LinearLR
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from torch.optim import Optimizer
import numpy as np
from SCP.datasets import datasets_loader
from SCP.datasets.utils import load_dataloader
from SCP.utils.common import load_config, my_custom_logger
from SCP.utils.plots import plot_loss_history
from SCP.models.model import load_model, load_weights, load_checkpoint
from test import validate_one_epoch
from SCP.models.model import save_checkpoint
def get_args_parser():
parser = argparse.ArgumentParser(description="Training SNN", add_help=True)
parser.add_argument("--dataset", default="", type=str, help="dataset to train on")
parser.add_argument("--save-every", default=25, type=int, dest='save_every')
parser.add_argument("--resume", type=str, default='', help="path to the checkpoint to resume training")
parser.add_argument("--load-weights", type=str, default=False, dest='load_weights',
help="load weights for a model")
parser.add_argument("--conf", default="config", type=str, help="name of the configuration in config folder")
parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
parser.add_argument("-b", "--batch-size", dest='batch_size', default=16, type=int, help="batch size")
parser.add_argument("-j", "--workers", dest='workers', default=4, type=int, help="workers for train")
parser.add_argument("--model", default="", type=str, help="name of the model",
choices=['Fully_connected', 'ConvNet'])
parser.add_argument("--encoder", default="poisson", type=str, choices=["poisson", "neuromorphic"],
help="encoder to use. Options 'poisson' and 'neuromorphic'")
parser.add_argument("--n-time-steps", default=24, type=int, dest='n_time_steps',
help="number of timesteps for the simulation")
parser.add_argument("--f-max", default=100, type=int, dest='f_max',
help="max frequency of the input neurons per second")
parser.add_argument("--arch-selector", default=1, type=int,
dest="arch_selector", help="selects the architecture from the available ones")
parser.add_argument("--penultimate-layer-neurons", default=200, type=int, dest="penultimate_layer_neurons",
help="number of neurons in the second to last layer of the model")
parser.add_argument("--epochs", default=10, type=int)
parser.add_argument("--lr", default=0.001, type=float)
parser.add_argument("--opt", default="AdamW", type=str, help="optimizer. Options: Adam, AdamW and SGD")
parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
parser.add_argument(
"--wd", "--weight-decay", default=0.00001, type=float, metavar="W",
help="weight decay (default: 1e-5)", dest="weight_decay",
)
parser.add_argument("--lr-decay-milestones", default=[], type=int, nargs='+',
dest="lr_decay_milestones", help="lr decay milestones")
parser.add_argument("--lr-decay-step", default=0, type=int, dest="lr_decay_step", help="lr decay step")
parser.add_argument("--lr-decay-rate", default=0, type=float, dest="lr_decay_rate", help="lr decay rate")
parser.add_argument("--constant-lr-scheduler", default=0, type=float, dest="constant_lr_scheduler",
help="Use ConstantLR to decrease the LR the first epoch by the factor specified")
return parser
def train_one_epoch(model, device, train_loader, optimizer, epoch):
model.train()
losses = []
for data, target in tqdm(train_loader, leave=False, desc=f'Progress of epoch {epoch + 1}'):
# Process data
if target.dtype == torch.int32:
target = target.to(torch.int64)
data, target = data.to(device), target.to(device)
output = model(data)
# Negative loglikelihoog loss, for classification problems.
# The input must contain log probabilities of each class
loss = torch.nn.functional.nll_loss(output, target)
# Backpropagation
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# Store the losses of every minibatch
losses.append(loss.item())
mean_loss = np.mean(losses)
return losses, mean_loss
def train(model, device, train_loader: DataLoader, test_loader: DataLoader, epochs: int, start_epoch: int,
optimizer: Optimizer, lr_scheduler, logger, save_every_n_epochs=0, weights_pth=Path('.'), file_name='',
args=None):
training_losses = []
test_losses = []
accuracies = []
assert save_every_n_epochs >= 0 and isinstance(save_every_n_epochs, int), f'save_every must be ' \
f'an integer greater than 0, not {save_every_n_epochs}'
if save_every_n_epochs > 0:
assert weights_pth != '.' and file_name != '' and args is not None, 'datasets_path, file_path ' \
'and args must be passed to the function'
for epoch in range(start_epoch, epochs):
logger.info(f'Epoch {epoch + 1}:')
t = time.perf_counter()
# Train
_, mean_training_loss = train_one_epoch(model, device, train_loader, optimizer, epoch)
# Val
mean_test_loss, accuracy, _ = validate_one_epoch(model, device, test_loader)
# Accumulate losses
training_losses.append(mean_training_loss)
test_losses.append(mean_test_loss)
accuracies.append(accuracy)
logger.info(f"\tTraining loss:\t{mean_training_loss}")
logger.info(f"\tTest loss:\t {mean_test_loss}")
logger.info(f"\tAccuracy test:\t{accuracies[-1]}%")
logger.info(f"\tComputation time:\t{(time.perf_counter() - t)/60:.2f} minutes")
# Update the learning rate
if lr_scheduler:
if isinstance(lr_scheduler, list):
for sched in lr_scheduler:
sched.step()
else:
lr_scheduler.step()
if save_every_n_epochs:
if (epoch + 1) % save_every_n_epochs == 0:
file_path = weights_pth / f'{file_name}_checkpoint{epoch+1}.pth'
save_checkpoint(file_path, model, optimizer, args, epoch, lr_scheduler)
logger.info(' ---------------------------------')
logger.info(f' - Checkpoint saved for epoch {epoch+1} -')
logger.info(' ---------------------------------')
return training_losses, test_losses
def main(args):
print('****************** Starting training script ******************')
print('Selecting device')
# Device for computation
device = args.device if torch.cuda.is_available() else torch.device('cpu')
print(f'Selected device: {args.device}')
# Paths
config_pth = load_config('paths')
logs_path = Path(config_pth["paths"]["logs"])
figures_path = Path(config_pth["paths"]["figures"])
weights_path = Path(config_pth["paths"]["weights"])
datasets_path = Path(config_pth["paths"]["datasets"])
print('Loaded paths')
# Load dataset and its config and create the data loaders
all_datasets_conf = load_config('datasets')
import ssl
ssl._create_default_https_context = ssl._create_unverified_context # To enable the correct download of datasets
if args.dataset in all_datasets_conf.keys():
dataset_conf = all_datasets_conf[args.dataset]
else:
raise NotImplementedError(f'Dataset with name {args.dataset} is not implemented')
print(f'Loading {args.dataset}...')
in_dataset_data_loader = datasets_loader[args.dataset](datasets_path)
train_data = in_dataset_data_loader.load_data(
split='train', transformation_option='train', output_shape=dataset_conf['input_size'][1:]
)
test_data = in_dataset_data_loader.load_data(
split='test', transformation_option='test', output_shape=dataset_conf['input_size'][1:]
)
if in_dataset_data_loader.neuromorphic_data:
args.encoder = 'neuromorphic'
# Define loaders
train_loader = load_dataloader(train_data, args.batch_size, shuffle=True, num_workers=args.workers,
neuromorphic=in_dataset_data_loader.neuromorphic_data)
test_loader = load_dataloader(test_data, args.batch_size, shuffle=False,
neuromorphic=in_dataset_data_loader.neuromorphic_data)
print(f'Load of {args.dataset} completed!')
# Set logger
fname = f'{args.dataset}_{args.model}_{args.penultimate_layer_neurons}' \
f'_{dataset_conf["classes"]}_{args.arch_selector}_layers'
logger = my_custom_logger(logger_name=f'train_{fname}.txt', logs_pth=logs_path)
logger.info(args)
# Load model
model = load_model(
model_type=args.model,
input_size=dataset_conf['input_size'],
hidden_neurons=args.penultimate_layer_neurons,
output_neurons=dataset_conf['classes'],
arch_selector=args.arch_selector,
encoder=args.encoder,
n_time_steps=args.n_time_steps,
f_max=args.f_max
)
model = model.to(device)
if args.load_weights:
load_weights(model, args.load_weights)
# Optimizer and LR scheduler
params = [p for p in model.parameters() if p.requires_grad]
opt_name = args.opt.lower()
if opt_name.startswith("sgd"):
optimizer = torch.optim.SGD(
params,
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov="nesterov" in opt_name,
)
elif opt_name == "adamw":
optimizer = torch.optim.AdamW(params, lr=args.lr, weight_decay=args.weight_decay)
elif opt_name == "adam":
optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay)
elif opt_name == "adagrad":
optimizer = torch.optim.Adagrad(params, lr=args.lr, weight_decay=args.weight_decay)
else:
raise RuntimeError(f"Invalid optimizer {args.opt}. Only SGD and AdamW are supported.")
# Learning rate scheduler
lr_scheduler = None
if args.lr_decay_milestones:
logger.info('Using MultiStepLR')
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=args.lr_decay_milestones,
gamma=args.lr_decay_rate,
last_epoch=-1,
verbose=True
)
elif args.lr_decay_step:
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=args.lr_decay_step, gamma=args.lr_decay_rate, verbose=True
)
else:
logger.info('No LR scheduler used')
if args.constant_lr_scheduler:
logger.info('Using the ConstantLR to adjust by a factor the first epoch of the training')
lr_scheduler = [
lr_scheduler, torch.optim.lr_scheduler.ConstantLR(
optimizer=optimizer,
factor=args.constant_lr_scheduler,
total_iters=1,
verbose=True
)
]
start_epoch = 0
if args.resume:
start_epoch = load_checkpoint(model, weights_path=args.resume, optimizer=optimizer, lr_scheduler=lr_scheduler)
logger.info('* - - - - - - - - - - - - - - - - - - - - - - - - - - - -')
logger.info(model)
logger.info('* - - - - - - - - - - - - - - - - - - - - - - - - - - - -')
# Train the model
train_losses, test_losses = train(
model,
device,
train_loader=train_loader,
test_loader=test_loader,
epochs=args.epochs,
start_epoch=start_epoch,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
logger=logger,
save_every_n_epochs=args.save_every,
weights_pth=weights_path,
file_name=fname,
args=args
)
logger.info('Saving model...')
save_checkpoint(
fpath=weights_path / f'state_dict_{fname}.pth',
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
args=args,
epoch=args.epochs,
)
logger.info('Model saved!')
plot_loss_history(train_losses, test_losses, fpath=figures_path / f'history_{fname}.jpg')
if __name__ == "__main__":
main(get_args_parser().parse_args())