-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
executable file
·27 lines (21 loc) · 1.13 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import torch
from PIL import Image
from HawkLlama.model import LlavaNextProcessor, LlavaNextForConditionalGeneration
from HawkLlama.utils.conversation import conv_llava_llama_3, DEFAULT_IMAGE_TOKEN
processor = LlavaNextProcessor.from_pretrained("AIM-ZJU/HawkLlama_8b")
model = LlavaNextForConditionalGeneration.from_pretrained("AIM-ZJU/HawkLlama_8b", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
model.to("cuda:0")
image_file = "assets/coin.png"
image = Image.open(image_file).convert('RGB')
prompt = "what coin is that?"
prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt
conversation = conv_llava_llama_3.copy()
user_role_ind = 0
bot_role_ind = 1
conversation.append_message(conversation.roles[user_role_ind], prompt)
conversation.append_message(conversation.roles[bot_role_ind], "")
prompt = conversation.get_prompt()
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
output = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, max_new_tokens=2048, do_sample=False, use_cache=True)
print(processor.decode(output[0], skip_special_tokens=True))