diff --git a/model/pointgroup/pointgroup.py b/model/pointgroup/pointgroup.py index 99a53dc..d3b5eb1 100644 --- a/model/pointgroup/pointgroup.py +++ b/model/pointgroup/pointgroup.py @@ -12,13 +12,13 @@ import numpy as np from model.transformer import TransformerEncoder -def dice_coefficient(x, target, weight): +def dice_coefficient(x, target): eps = 1e-5 - # n_inst = x.size(0) - # x = x.reshape(n_inst, -1) - # target = target.reshape(n_inst, -1) - intersection = (x * target).sum() - union = (x ** 2.0).sum() + (target ** 2.0).sum() + eps + n_inst = 1 + x = x.reshape(n_inst, -1) + target = target.reshape(n_inst, -1) + intersection = (x * target).sum(dim=1) + union = (x ** 2.0).sum(dim=1) + (target ** 2.0).sum(dim=1) + eps loss = 1. - (2 * intersection / union) return loss @@ -742,7 +742,7 @@ def loss_fn(loss_inp, epoch): loss_out['offset_dir_loss'] = (offset_dir_loss, valid.sum()) loss = cfg.loss_weight[0] * semantic_loss + cfg.loss_weight[1] * offset_norm_loss + cfg.loss_weight[2] * offset_dir_loss - + dice_loss = offset_dir_loss.new_tensor(0.0) if (epoch > cfg.prepare_epochs): proposals_idx_shift = loss_inp['proposals_idx_shift'] @@ -780,7 +780,7 @@ def loss_fn(loss_inp, epoch): write_ply_color(coords_np, ins_label_np, 'ins.obj') write_ply_color(coords_np, seg_label_np, 'seg.obj') - + valid_num = 0 assert inst_pred_seg_label.size(0) == inst_num for n in range(inst_num): start = proposals_offset_shift[n].item() @@ -805,7 +805,12 @@ def loss_fn(loss_inp, epoch): if cover_percent > 0.3: inst_gt_mask[n] = (instance_masked ==ins_label_n) - + valid_id = (weights[n]>0).nonzero().squeeze(dim=1) + if valid_id.size(0) >0: + inst_gt = inst_gt_mask[n][valid_id] + inst_pred = torch.sigmoid(mask_logits[n])[valid_id] + dice_loss += dice_coefficient(inst_pred, inst_gt).mean() + valid_num += 1 if DEBUG: sel_batch_id = 0 @@ -840,8 +845,9 @@ def loss_fn(loss_inp, epoch): loss_out['score_loss'] = (score_loss, proposals_offset_shift.size(0)-1) loss += (cfg.loss_weight[3] * score_loss) - dice_loss = dice_coefficient(torch.sigmoid(mask_logits.view(-1)), inst_gt_mask.view(-1), weights.view(-1)) - loss_out['dice_loss'] = (dice_loss, dice_loss.new_tensor(1.0)) + dice_loss = dice_loss / valid_num + loss += dice_loss + loss_out['dice_loss'] = (dice_loss, 1)