-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsgemm.cu
200 lines (171 loc) · 5.2 KB
/
sgemm.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
Original works by:
--------------------------------------------------------
MAGMA
Copyright (c) 2017 The University of Tennessee. All rights reserved.
Licensed under modified BSD license
*/
// These parameters will be determined by utils.read_code
//#define DIM_X ${DIM_X}
//#define DIM_Y ${DIM_Y}
//#define BLK_M ${BLK_M}
//#define BLK_N ${BLK_N}
//#define BLK_K ${BLK_K}
//#define DIM_XA ${DIM_XA}
//#define DIM_YA ${DIM_YA}
//#define DIM_XB ${DIM_XB}
//#define DIM_YB ${DIM_YB}
//#define THR_N ${THR_N}
//#define THR_M ${THR_M}
#define fetch(arr, col, m, n, bound) arr[min(n*col + m, bound)]
extern "C" __global__
void sgemm(
int M, int N, int K,
const float* A,
const float* B,
float * C)
{
int idx = threadIdx.x;
int idy = threadIdx.y;
int idt = DIM_X * idy + idx;
int idxA = idt % DIM_XA;
int idyA = idt / DIM_XA;
int idxB = idt % DIM_XB;
int idyB = idt / DIM_XB;
int blx = blockIdx.x;
int bly = blockIdx.y;
__shared__ float sA[BLK_K][BLK_M + 1];
__shared__ float sB[BLK_N][BLK_K + 1];
// registers for the innermost loop
float rC[THR_N][THR_M];
float rA[THR_M];
float rB[THR_N];
float ra[BLK_K / DIM_YA][BLK_M / DIM_XA];
float rb[BLK_N / DIM_YB][BLK_K / DIM_XB];
const float* offs_dA = A + blx * BLK_M + idyA * M + idxA;
int boundA = (M * (K - 1) + M) - (blx * BLK_M + idyA * M + idxA) - 1;
const float* offs_dB = B + bly * BLK_N * K + idyB * K + idxB;
int boundB = (K * (N - 1) + K) - (bly * BLK_N * K + idyB * K + idxB) - 1;
int m, n, k, kk;
#pragma unroll
for (n = 0; n < THR_N; n++) {
#pragma unroll
for (m = 0 ; m < THR_M; m++) {
rC[n][m] = 0;
}
}
// blockwise transpose to transpose load
#pragma unroll
for (n = 0; n < BLK_K; n += DIM_YA) {
#pragma unroll
for (m = 0; m < BLK_M; m += DIM_XA) {
sA[n + idyA][m + idxA] = fetch(offs_dA, M, m, n, boundA);
}
}
// blockwise transpose to transpose load
#pragma unroll
for (n = 0; n < BLK_N; n += DIM_YB) {
#pragma unroll
for (m = 0; m < BLK_K; m += DIM_XB) {
sB[n + idyB][m + idxB] = fetch(offs_dB, K, m, n, boundB);
}
}
__syncthreads();
for (kk = 0; kk < K - BLK_K; kk += BLK_K)
{
offs_dA += BLK_K * M;
boundA -= BLK_K * M;
offs_dB += BLK_K;
boundB -= BLK_K;
#pragma unroll
for (n = 0; n < BLK_K / DIM_YA; n++) {
#pragma unroll
for (m = 0; m < BLK_M / DIM_XA; m++) {
ra[n][m] = fetch(offs_dA, M, m * DIM_XA, n * DIM_YA, boundA);
}
}
#pragma unroll
for (n = 0; n < BLK_N / DIM_YB; n++) {
#pragma unroll
for (m = 0; m < BLK_K / DIM_XB; m++) {
rb[n][m] = fetch(offs_dB, K, m * DIM_XB, n * DIM_YB, boundB);
}
}
// multiply
#pragma unroll
for (k = 0; k < BLK_K; k++)
{
#pragma unroll
for (m = 0; m < THR_M; m++) {
rA[m] = sA[k][m * DIM_X + idx];
}
#pragma unroll
for (n = 0; n < THR_N; n++) {
rB[n] = sB[n * DIM_Y + idy][k];
}
#pragma unroll
for (n = 0; n < THR_N; n++) {
#pragma unroll
for (m = 0; m < THR_M; m++) {
rC[n][m] += rA[m] * rB[n];
}
}
}
__syncthreads();
// store A regs->smem
#pragma unroll
for (n = 0; n < BLK_K / DIM_YA; n++)
{
#pragma unroll
for (m = 0; m < BLK_M / DIM_XA; m++)
{
sA[n * DIM_YA + idyA][m * DIM_XA + idxA] = ra[n][m];
}
}
#pragma unroll
for (n = 0; n < BLK_N / DIM_YB; n++)
{
#pragma unroll
for (m = 0; m < BLK_K / DIM_XB; m++)
{
sB[n * DIM_YB + idyB][m * DIM_XB + idxB] = rb[n][m];
}
}
__syncthreads();
}
// Multiply last full (BLK_K) or partial block of columns of A and
// rows of B.
// It's okay that m,n exceed matrix bounds as all work is in registers
// or shared memory, and out-of-bounds rC[n][m] will not be saved later.
kk = K - kk;
#pragma unroll
for (k = 0; k < kk; k++)
{
#pragma unroll
for (m = 0; m < THR_M; m++) {
rA[m] = sA[k][m * DIM_X + idx];
}
#pragma unroll
for (n = 0; n < THR_N; n++) {
rB[n] = sB[n * DIM_Y + idy][k];
}
#pragma unroll
for (n = 0; n < THR_N; n++) {
#pragma unroll
for (m = 0; m < THR_M; m++) {
rC[n][m] += rA[m] * rB[n];
}
}
}
#pragma unroll
for (n = 0; n < THR_N; n++) {
int coord_dCn = bly * BLK_N + n * DIM_Y + idy;
#pragma unroll
for (m = 0; m < THR_M; m++) {
int coord_dCm = blx * BLK_M + m * DIM_X + idx;
if (coord_dCm < M && coord_dCn < N) {
C[coord_dCn * M + coord_dCm] = rC[n][m];
}
}
}
}