Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Running a test locally with webcam #93

Open
AmitHaritan2525 opened this issue Nov 30, 2020 · 0 comments
Open

Running a test locally with webcam #93

AmitHaritan2525 opened this issue Nov 30, 2020 · 0 comments

Comments

@AmitHaritan2525
Copy link

Hi,
i didn't understand what i need to do in order to run a simulation locally using my own webcam.
I tried running the online_test.py with the predefined models in the wiki but i got this output:
|Total number of trainable parameters: 33409104 [INFO]: RGB model is used for init model Model 1 DataParallel( (module): ResNet( (conv1): Conv3d(3, 64, kernel_size=(3, 7, 7), stride=(1, 2, 2), padding=(1, 3, 3), bias=False) (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (maxpool): MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1, dilation=1, ceil_mode=False) (layer1): Sequential( (0): BasicBlock( (conv1): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (1): BasicBlock( (conv1): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer2): Sequential( (0): BasicBlock( (conv1): Conv3d(64, 128, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv3d(64, 128, kernel_size=(1, 1, 1), stride=(2, 2, 2), bias=False) (1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer3): Sequential( (0): BasicBlock( (conv1): Conv3d(128, 256, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv3d(128, 256, kernel_size=(1, 1, 1), stride=(2, 2, 2), bias=False) (1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer4): Sequential( (0): BasicBlock( (conv1): Conv3d(256, 512, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv3d(256, 512, kernel_size=(1, 1, 1), stride=(2, 2, 2), bias=False) (1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (avgpool): AvgPool3d(kernel_size=(1, 4, 4), stride=1, padding=0) (fc): Linear(in_features=512, out_features=400, bias=True) ) ) Total number of trainable parameters: 33371472 Namespace(annotation_path='/home1/[email protected]/YuvalAmit/PycharmProjects/HandGesture/kinetics.json', arch='resnet', batch_size=128, begin_epoch=1, checkpoint=10, clf_queue_size=1, clf_strategy='raw', clf_threshold_final=1, clf_threshold_pre=1, crop_position_in_test='c', dampening=0.9, dataset='egogesture', det_counter=1, det_queue_size=1, det_strategy='raw', downsample=1, ft_begin_index=0, ft_portion='complete', groups=3, initial_scale=1.0, learning_rate=0.1, lr_patience=10, lr_steps=[10, 20, 30, 40, 100], manual_seed=1, mean=[114.7748, 107.7354, 99.475], mean_dataset='activitynet', modality='RGB', modality_clf='RGB', modality_det='RGB', model='resnet', model_clf='resnet', model_depth=18, model_depth_clf=18, model_depth_det=18, model_det='resnet', momentum=0.9, n_classes=400, n_classes_clf=400, n_classes_det=400, n_epochs=200, n_finetune_classes=400, n_finetune_classes_clf=400, n_finetune_classes_det=400, n_scales=5, n_threads=4, n_val_samples=3, nesterov=False, no_cuda=False, no_hflip=False, no_mean_norm=False, no_softmax_in_test=False, no_train=False, no_val=False, norm_value=1, optimizer='sgd', pretrain_path='', pretrain_path_clf='', pretrain_path_det='', resnet_shortcut='B', resnet_shortcut_clf='B', resnet_shortcut_det='B', resnext_cardinality=32, resnext_cardinality_clf=32, resnext_cardinality_det=32, result_path='/home1/[email protected]/YuvalAmit/PycharmProjects/HandGesture/results', resume_path='', resume_path_clf='', resume_path_det='', root_path='/home1/[email protected]/YuvalAmit/PycharmProjects/HandGesture', sample_duration=16, sample_duration_clf=16, sample_duration_det=16, sample_size=112, scale_in_test=1.0, scale_step=0.84089641525, scales=[1.0, 0.84089641525, 0.7071067811803005, 0.5946035574934808, 0.4999999999911653], std=[38.7568578, 37.88248729, 40.02898126], std_norm=False, store_name='model', stride_len=1, test=True, test_subset='val', train_crop='corner', video='data2/EgoGesture/videos/Subject02/Scene1/Color/rgb1.avi', video_path='/home1/[email protected]/YuvalAmit/PycharmProjects/HandGesture/video_kinetics_jpg', weight_decay=0.001, whole_path='video_kinetics_jpg', wide_resnet_k=2, wide_resnet_k_clf=2, wide_resnet_k_det=2, width_mult=1.0, width_mult_clf=1.0, width_mult_det=1.0) Total number of trainable parameters: 33409104 [INFO]: RGB model is used for init model Model 2 DataParallel( (module): ResNet( (conv1): Conv3d(3, 64, kernel_size=(3, 7, 7), stride=(1, 2, 2), padding=(1, 3, 3), bias=False) (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (maxpool): MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1, dilation=1, ceil_mode=False) (layer1): Sequential( (0): BasicBlock( (conv1): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (1): BasicBlock( (conv1): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer2): Sequential( (0): BasicBlock( (conv1): Conv3d(64, 128, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv3d(64, 128, kernel_size=(1, 1, 1), stride=(2, 2, 2), bias=False) (1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer3): Sequential( (0): BasicBlock( (conv1): Conv3d(128, 256, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv3d(128, 256, kernel_size=(1, 1, 1), stride=(2, 2, 2), bias=False) (1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer4): Sequential( (0): BasicBlock( (conv1): Conv3d(256, 512, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv3d(256, 512, kernel_size=(1, 1, 1), stride=(2, 2, 2), bias=False) (1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False) (bn2): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (avgpool): AvgPool3d(kernel_size=(1, 4, 4), stride=1, padding=0) (fc): Linear(in_features=512, out_features=400, bias=True) ) ) Total number of trainable parameters: 33371472 Start Evaluation Average Levenshtein Accuracy= 0 -----Evaluation is finished------
i am not sure this is the correct output.
Can you please specify the steps and scripts i need to run? or what i did wrong?
Thanks,
Amit

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant